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ABSTRACT

Let F be an operator mapping a set X into itself. A point x є X is called a fixed point of F if x = F(x).
Hence finding a fixed point on an operator F is equivalent to obtaining a solution of  f(x) = 0 By this research
work, we consider the contraction mapping principle and its application in the solution of the non linear
integral equation of radiative transfer.
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Introduction 

We now consider the Newton’s method of solution for integral equations, first, we consider the
linearization of equations.

Linearization of Equations:

Let F be a Fretchet differentiable operator mapping a subset of a Banach space X into a Banach space
Y.
Consider the equation

F(x)= 0                    (1.1)

The principle method for constructing successive approximations  xn to the solution x* of (1.1) is based
on successive linearization of the equation. If the approximation to xn exists, then xn+1, can be computed by
replacing 

(1.1) by F/ (xn) + F/ (xn) (xn + 1 ! – xn) = 0                    (1.2)

if [F/ (xn)]
-1 є L (Y,X), then approximation Xn + 1 is given by xn +1 = xn – [F/(xn) ]

-1 F/(xn) , n $ 0       (1.3)

The iteration procedure generated by (1.3) is known as Newton- kantrovich method.

Convergence of Newton’s Method:

We seek the condition for which the iteration sequence {Xn} defined by (1.3) will converge to a solution
x = x* of the nonlinear equation.
F (x) = 0 
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Define the operator G by

G (x) = x – (F/ (x))-1 F(x)                    (2.1)

Then, the Newton – kantrovich method may be regarded as the usual iteration method,

Xn +1 = G(xn), n $ 0                    (2.2)

For approximating the solution x* of the equation 

x = G(x)                    (2.3)

Suppose that

Lim xn = x*,                    (2.4)
 n ö  4

we investigate under what conditions of  F and F’ the point x* is a solution of (1.1)

Proposition 1 Rall (1969):

If F  is continuous at x = x*, then we have 

F(x*) = 0                    (2.5)

Proof:

The  approximation xn, satisfies the equation 

F (xn)  (xn+1- xn) =  F (xn)                    (2.6)

Since the continuity of F at x* follows from the continuity of F3, and taking the limit as n  ö  4 in (2.6), (2.5)
is obtained.

Proposition 2 Argyrols (2005):

If 5 F3 (x) 5 # b                    (2.7)

in some closed ball which contains {xn}, then x* is a solution of F(x) = 0.

Proof: 

As xn ö x* we arrive at the result.

Lim F(xn) = F (x*)                    (2.8)
n  ö  4

And since 
5F(xn) 5 # b5xn+1 – xn 5                    (2.9)

(2.5) is obtained by taking the limit as n  ö  4  in (2.9)

Proposition 3 Argyros (2005):

If 5 F3 (x) 5 # k…2.10

In some closed ball B(x0 , r), 0 <r> 4 which contains {xn}, then x* is a solution of the equation (1.1).
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Proof :

5F/ (x) – F/ (x0) 5# k 5 x- x05# k r                   (2.11)

So the condition of proposition 3.9 holds with

b = 5F/ (x0) 5+ Kr                   (2.12)

It should be noted that under the hypothesis of the foregoing proposition, the convergence of the Newton
sequence {xn} implied the existence of a solution x = x* of  F(x) = 0.

It follows that if the existence and convergence of Newton sequence can be established, Hhen it is certain
that the equation (1.1) has a solution.

Nest, we give the statement of the theorem of convergence of Newton’s  method in Banach spaces as
formulated by the  kantrovich. Theorem below. 

Consider the Newton sequence (xn} sating from some point x0. it is assumed that [F1 (x0)]
-1 exists and

permits the calculation of the next point,

x1 = x0 – [ F/ (x0)]
-1 F(x0)]                   (2.13)

and there exists constants B0 , n0 such that       

5 [F (x0)]
-1 5# B0                   (2.14)

5x1-x05# n0         (2.15)

respectively 

Theorem 4 (Kantrovich’s theorem) Rall (1969),Argyros (2005):

IF 5 F// (x) 5 # k                   (2.16)
        O

In some closed ball B (x0, r) and h0 =  B0 η 0 k # ½ ,
The Newton sequence {xn}, converges to a solution x* of equation (1.1) which exist in  B(x0,r) provided

that 

r  $  r0  =  1-%(1- 2h0)
          ))))))))  η0                   (2.17)

                   h0

Modified Newton’s method:

Methods for computing the solutions of nonlinear operator equations are related in some way to Newton’s
method or method of successive approximations.

We consider the sequence,

Xn+1 = xn- Ln 
-1yn.          (3.1)

Where , Ln
-1  is  an approximations of [F’ (xn)]

-1 and yn is close to F (xn) respectively could be used to
describe a variant of Newton’s method.

A similar process leads to the modified Newton’s  method,

Xn+1 = xn – [F’(x0)]
-1 F(xn)          (3.2)

This procedure has as advantage of the reduction in labour of calculating F/ (x0) and its inverse [F/(x0)]
-1

since this is done once and for all, after which the fixed point of the modified Newton iteration procedure is
sought by successive approximations.
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Existence of Solutions of Fredhom Nonlinear Integral Equations by Newtons Method:

In this section, we consider the existence of solution for a nonlinear integral equation of  the type,
                 b   
x(s) = f(s) + λ I  K (s,t) x(t)p dt, s € (a, b] ,p $ 2          (4.1)
                 a
where λ is a real number, the kernel K(s,t) and f(s) are numbers  also  following  the analysis  of Guitierrez.
et al., (2004), we express (4.1) in the form 

F(x) =0          (4.2)

where F: Ω C OX  ö  Y is a nonlinear  operator defined by
                           b
F(x)(s) = x(s) – f(s) – λ I K(s,t) x (t)p dt, p $ 2          (4.3)
                           a
and X = Y = C[a,b] is the space of continuous function on the interval [a, b] equipped with the max norm.

5x5 = max {*x(s)*: s є  [0,1] }.

We apply the modified form of Newton’s method defined by 

xn+1 =xn – T0 F (xn), n $ 0          (4.4)

where T0 is the inverse of the linear operator defined from X to Y by 
                         b
F/ (x0)y(s) = y(s) – λp I K (s,t)x(t)p-1 y(t) dt, x Є  [a,b], yє X          (4.5)
                         a
                 b 
Let N = max   I *K(s,t)*dt and x0 be a function in   such that T0 =[F/ (x0)]

-1 
                 a

exists and 5T0 F(x0)5< η

< η and M = *λ*pN.

Next, we assume the following conditions, Gutierrez et al., (2004)

         (4.6)

p-1
0

0

p-2
0 0

(i) R,R a realnumber

(ii) a=M( x +R) 1

(p-1) and h (t) 1
(iii) If wedenote b=

2( x R) 1 t

Than abh (a)<1

(iv) 2( -t)+M( x +t) [(p 1) t-2( -t)( x +t)=0.





  




 
   


 

We will consider the following Lemmas:

Lemma 5 Ezquerro and Hermandez (2004):

From (i) to (iv) of (4.6) , it follows that 
 n
3   (abh(a))i η <   η           = R     
i = 0   ))))))))
                    1 – abh(a)      
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Theorem 6 (Banach Lemma on Invertible Operators), Argyros (2005):

If T is a bounded linear operation in X, T-1 exists if and only if there is a bounded linear  operator P in
X such that P-1 exists and 5 1 – PT 5< 1.

LEMMA 7 Guitierrez. et al (2004) evanglies:

If B (x0, R)  C $ Ω, then for all x C B (x0, R), [F’ (x)]-1 exists and 5[F’(x)]-1 5# h (a).

Proof:

Applying theorem 3.13, and noting that 
                      b
(1 – F’(x)) y(s) =λpI K (s,t) x (t) p-1 y(t) dt,
                      a
Then,

5 1 –F’(x) 5#*λ*pN5x5p-1

#M (5x0 5 + R) p-1 = a<1

Therefore, [F’(x)]-1 exist and 5 F’ (x)-1 5 #   1     = h(a)
           ))))

                                       1-a
                                                              b
Applying Theorem 6, and noting that (1-F’(x)) y(s) = λp I K (s,t)x(t)p-1 y(t)dt.                               
                                                              a
Then,

51-F/(x)5# *λ*pN5 x5p-1

# M (5x05 + R)p-1 = a < 1.

Therefore, [F/(x)]-1 exists and 5F’ (x)]-1 5 #  1  = h (a).
)))

                                                        1-a 

The above Lemma guaratees the existence of T0 for some x0Є X, where T0 is the inverse of the linear
operator F  (xn) at n = 0

Lemma 8 Guitierrez et al., (2004):

If B (x0, R) C  Ω and assumptions (i) to (iv) of (4.6) hold,

Then for xn, xn-1 є B (x0,R)

5F (xn) 5# ½ M(p – 1) (5x05 + R)p-2 5xn – xn-15
2

Proof:

Using Taylor’s formula , we have
         1

F (xn) (s) = I [F3 (xn-1 + y(xn  - xn-1)) – F3 (xn – 1 )](xn – xn-1) (s) dy
              0 
         1 b          
= - λ p I I k (s,t)   pn (y,t)p-1 xn-1(t)

p-1] (xn(t) – xn-1(t)]dtdy
         0 a
                  
         1  b            p -2
= - λ p I  I K ( s,t) [ 3 pn (y,t)p-2-i  xn-1 (t) ] [xn(t) – xn-1(t)]

2 ydtdy
         0 a             i=0
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Where pn(y,t) = xn-1(t) + y (xn – xn-1 ) and we have used  the inequality,
                  p - 2
ap-1 – bp -1 = ( 3 ap-2-1 b1) (a – b) a,b є R.
                  i = 0

Since xn-1, xn Є B (x0,R) for each y є [0,1], pn (y,,) є B(x0, R),
Then,

5 pn (y)5# 5x0 5 + R. Consequently,
                         p - 2
5 F(xn) 5#  *λ*p N  ( 3(5 x0 5 + R)p-2-ί 5 xn-15

i) 5xn – xn-1 5
2

         )))))    i = 0
                2
#   *λ*p(p -1) [ 5x0 5+ R ]p-2 5 xn – xn-1 5

2

     )))))))
         2
=    (p – 1) a   5xn – xn-1 5

2  
     ))))))))          (4.7)
     2(5x0 5+ R)

       1   
=     ))  M(P – 1) (5x05 + R) p - 25 xn – xn-15

2          (4.8)
       2

Which completes the proof.
Next, we give the result on the existence of a solution of equation (4.2). This theorem is a modified form

of Guitierrez et al (2004), and can be stated as follows.

Theorem 9:

Let (4.6) (iv) have a positive solution with t = R being smaller solution and let 
B (xo, R) OC  Ω, then (4.2) has least one solution x* є B (x0,R).

Proof:

The proof of this Theorem follows from Guitierrez et al with some modifications.
We note that. 

X0+1  = xn –  TnF(xn) = xn – [F(xn)]
-1 Fxn

x1 = x0 – T0 F(x0), 5T0F(x0)5<η

so 5x1 – x0 5 = 5T0 F(x0 5< η<R by (4.6) (i).

and x1 є B (x0, R).

From (4.7)
          (p – 1)a   5x1 - x0 5

2 = abη
5F (x1) 5#  ))))))))
             2(5x05+R)

And therefore 
5 x2 - x05 # abh(a) η

Then by Lemma 5
5 x2 - x05< 5 x2 – x15 +5 x1 - x05

# abh (a) η +η   
# (1 + abh (a)) η < R,
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It follows that x2 є B(x0, R), By induction, we have that 
5 xn – xn-1 5 # (abh(a))n-1 5 x1 - x05          (4.9)

In addition by triangle inequality, we also have 

                        n – 1                                        η
5 xn - x05 #  ( 3(abh(a))1 )5x1 – x05  < ( 3(5 (abh(a)1) η  < ))))         
                         ί = 0                                     1-abh

Consequently, xn  є B (x0, R) for all n $0. Next we prove that {xn } is a Cauchy sequence.
From (4.6) (i) to (iv) and (4.9).  

5xn+m – xn 5 #5 xn+m – xn + m  15 + 5 xn+m  1– xn+m  25 + ….+5 xn – xn-15

# [(abh(a) m+n-1
  1(abh(a))m-2 + …+  a-1 bh (a) n]5x1 – x0 5

               1 – (abh(a))   
=(abh(a))n     )))))))))  η
               1 -  abh(a)   

then, by letting m ö 4, we have 5x* – x0 5 #(abh(a))n      η
       )))))

                                                              1 abh(a)
Since lim xm  = x* and abh(a) <1.
          m  ö  4
Finally, for n = 0 
                 η              
5x* – x0 5<    )))))
                1 abh(a)

And x* є B(x0, R). also from (4.9)
5F(xn)5#  1/2 M (p 1)(5 x0 5 + R)p – 2 5 xn xn-15

2

As n  ö  4, we obtain F(x*) = 0 and x* is a solution of F(x) = 0.

Application of Newton’s Method to Fredholm Nonlinear Integral Equation.:

We illustrate the theoretical result of section 4 with the following example consider the nonlinear integral
equation of fedholm types and second kind.
                          1
X(s) 0.075sin(πs) + 1/5 I cos (πs)sin (πs) x (t)s dt, s є [0,1]          (5.1)
                          0
Let X = C[ 0,1] be a space of continuous function defined on the interval (0,1) with the max norm and let

F: X     X be an operator defined  by.
                                           1
F (x) (s) = x(s) – 0.075 sin (πs) + 1/5 I cos (πs) sin (πs)x(t)3 dt, s є [0,1]          (5.2)
                                           0
By differentiating (5.2)
                                     1               
F/ (x) y (s) = y (s) – 3/5 cos (πs) I sin(πt)x (t)2 y (t) dt          (5.3)
                                     0
Which by section 4 gives.                                                                                 
                     1
λ = 1/5, N = max I *sin(πt)*dt = 1, M =   λ pN =   3/5
                     0
Choosing x0 (s) = 0 as a starting point,
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5F (x0) 5 = 0.075, and from (5.3)
F/ (x0) y(s) = y (s) giving,

F/(x0) = 1          (5.4)

From section 4
To verify [ x0)]

-1 assuming that To # 5T05 = 1 then 
5T0F(x0)5# 0.075 =  η  

Now, the equation (4.6) (iv) becomes.
1.2t3 – 2t  + 0.15 = 0 
This equation has two positive roots , the smaller one is R = 0.075255….
By theorem 6, (5.1) has a solution in the ball B (x0 , R).
From (4.4), we defined the modified Newton’s method by  
Xn+1(s) = xn (s) – T0 F (xn) , n $ 0…5.5

With the function x0 (s) as a starting point. First, we set 
       1
An = I sin (πt) xn (t)3 dt
      0
Then

Xn-1 = 0.075sin (πs) + 1/5 An cos (πs) ,
And we obtain the following approximations :
X1 (s) = 0.075sinπs.
X2 (s) =  0.075sinπs + 3.1640625x10-5 cosπs
X3 (s) =0.075sinπs + 3.1640306x10-5 cosπs    
X4 (s) = 0.075sinπs + 3.16406306x10-5 cosπs  
this implies that the modified Newton’s  method converges to the solution 
x* (s) =0.075sinπs + 3.16406306x10-5 cosπs.
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