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ABSTRACT

Let F be an operator mapping a set X into itself. A point x € X is called a fixed point of F if x = F(x).
Hence finding a fixed point on an operator F is equivalent to obtaining a solution of f(x) = 0 By this research
work, we consider the contraction mapping principle and its application in the solution of the non linear
integral equation of radiative transfer.
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Introduction

We now consider the Newton’s method of solution for integral equations, first, we consider the
linearization of equations.

Linearization of Equations:
Let F be a Fretchet differentiable operator mapping a subset of a Banach space X into a Banach space
g(.)nsider the equation
Fx)=0 (1.1)
The principle method for constructing successive approximations x, to the solution x* of (1.1) is based
on successive linearization of the equation. If the approximation to x, exists, then x,,,, can be computed by
replacing
(L) by F'(x) + F (%) (%, ! = %) = 0 (1.2)
if [F (x)]" € L (Y,X), then approximation X, + 1 is given by x, ., = x, — [F(x,) ' F(x,) ,n > 0 (1.3)
The iteration procedure generated by (1.3) is known as Newton- kantrovich method.
Convergence of Newton’s Method:
We seek the condition for which the iteration sequence {X,} defined by (1.3) will converge to a solution

x = x* of the nonlinear equation.
Fx)=0
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Define the operator G by

G =x-(F ) Fx (2.1)
Then, the Newton — kantrovich method may be regarded as the usual iteration method,

X, =6G(x,),n=>0 2.2)

For approximating the solution x* of the equation

x = G(x) (2.3)

Suppose that

Lim x, = X, 2.4)
n=> «

we investigate under what conditions of F and F’ the point x" is a solution of (1.1)
Proposition 1 Rall (1969):
If F is continuous at x = X', then we have
Fx) =0 (2.5)
Proof:
The approximation Xx,, satisfies the equation
Fx) (- x) = F(x) (2.6)

Since the continuity of F at x” follows from the continuity of F’, and taking the limit as n = « in (2.6), (2.5)
is obtained.

Proposition 2 Argyrols (2005):

If| F x| <b (2.7
in some closed ball which contains {x,}, then x* is a solution of F(x) = 0.

Proof:

As x, > x* we arrive at the result.

Lim F(x,) = F (x*) (2.8)
n 2> «

And since

IEG) || < bllxer = %, | (2.9)

(2.5) is obtained by taking the limit as n => « in (2.9)
Proposition 3 Argyros (2005):
If| FF )| <k..2.10

In some closed ball B(x, , r), 0 <r> « which contains {x,}, then x* is a solution of the equation (1.1).
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Proof :

[F'x) = F (%) ||< k | x- x]|< kt (2.11)
So the condition of proposition 3.9 holds with

b= |F(x) |+ Kr (2.12)

It should be noted that under the hypothesis of the foregoing proposition, the convergence of the Newton
sequence {x,} implied the existence of a solution x = x* of F(x) = 0.

It follows that if the existence and convergence of Newton sequence can be established, Hhen it is certain
that the equation (1.1) has a solution.

Nest, we give the statement of the theorem of convergence of Newton’s method in Banach spaces as
formulated by the kantrovich. Theorem below.

Consider the Newton sequence (x,} sating from some point x,. it is assumed that [F' (x,)]" exists and
permits the calculation of the next point,

X, =X, — [ F (x)]" F(x)] (2.13)

and there exists constants B, , n, such that

| IF o1 [« By (2.14)
[[ %% < n, (2.15)
respectively

Theorem 4 (Kantrovich’s theorem) Rall (1969),Argyros (2005):
IF||F& | <k (2.16)
In some closed ball B (x;, ryand hy= B,n,k <%,

The Newton sequence {x,}, converges to a solution x* of equation (1.1) which exist in B(x,,r) provided
that

r > r, = 1-V(1- 2hy)
— (2.17)
h,
Modified Newton’s method:

Methods for computing the solutions of nonlinear operator equations are related in some way to Newton’s
method or method of successive approximations.

We consider the sequence,
Xn+1 = Xy Ln >1yn. (31)
Where , L' is an approximations of [F’ (x,)]"' and y, is close to F (x,) respectively could be used to
describe a variant of Newton’s method.
A similar process leads to the modified Newton’s method,
Xy = X, [F(x0)]" F(x,) (3.2)
This procedure has as advantage of the reduction in labour of calculating F' (x,) and its inverse [F/(x,)]"

since this is done once and for all, after which the fixed point of the modified Newton iteration procedure is
sought by successive approximations.
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Existence of Solutions of Fredhom Nonlinear Integral Equations by Newtons Method:

In this section, we consider the existence of solution for a nonlinear integral equation of the type,
b
x(s) =1f(s) + A [ K (s,t) x(t)* dt, s € (a, b] ,p > 2 4.1
a
where A is a real number, the kernel K(s,t) and f(s) are numbers also following the analysis of Guitierrez.
et al., (2004), we express (4.1) in the form

F(x) =0 4.2)
where F: Q C _X - Y is a nonlinear operator defined by
b
F(x)(s) = x(s) — f(s) — A [ K(s,t) x (t)* dt, p > 2 4.3)
a

and X =Y = C[a,b] is the space of continuous function on the interval [a, b] equipped with the max norm.
[xI| = max {[x(s)[: s e [0.1] }.

We apply the modified form of Newton’s method defined by

X =X, — T, F (x,),n > 0 (4.4)
where T, is the inverse of the linear operator defined from X to Y by
F' (x0)y(s) = y(s) - Ap fbK (s,0x(@®"" y(t) dt, x € [ab], y. X (4.5)
. a
Let N = max [ |K(s,t)|dt and x, be a function in such that T, =[F’ (x,)]"
a

exists and || T, F(x,)[< n
<mnand M = |A|pN.

Next, we assume the following conditions, Gutierrez et al., (2004)

(1) 7 <R,Rarealnumber
(i) a=M(|}x,[|+R)™" <1

(p-Dn7_and h (1)

(ii1) If wedenote b= _b
2 [+R) 1=t

(4.6)

Than abh (a)<1
(iv) 2(n-)+M(|[x, |+ [(p — Dmt-2(77-)(|[x, | +£)=0.

We will consider the following Lemmas:
Lemma 5 Ezquerro and Hermandez (2004):

From (i) to (iv) of (4.6) , it follows that
n
Y (abh@) n< 7 =R
i=0 _

1 — abh(a)
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Theorem 6 (Banach Lemma on Invertible Operators), Argyros (2005):

If T is a bounded linear operation in X, T™' exists if and only if there is a bounded linear operator P in
X such that P exists and || 1 — PT ||< 1.

LEMMA 7 Guitierrez. et al (2004) evanglies:
If B (x,, R) C _ Q, then for all x C B (%, R), [’ (x)]"" exists and || [F’x)]" || < h (a).
Proof:

Applying theorem 3.13, and noting that
b

(1 - F’(x)) y(5) =Ap[ K (s,;t) x (1) P y(1) dt,
a
Then,

REI A
M ([, |+ R) ™ = as1

Therefore, [F’(x)]" exist and | F> x)' || < 1  =h(a)
1-a
b
Applying Theorem 6, and noting that (1-F’(x)) y(s) = Ap [ K (s,0)x(t)*'1 y(t)dt.
a
Then,

l-Feol < [2]pN] x|
M (%] + Ry =a<1.

Therefore, [F'(x)]" exists and |[F> (x)]" | < 1 =h (a).

1-a

The above Lemma guaratees the existence of T, for some x,€ X, where T, is the inverse of the linear
operator F (x,) atn =0

Lemma 8 Guitierrez et al., (2004):
If B (x, R) C Q and assumptions (i) to (iv) of (4.6) hold,
Then for x,, x,, € B (x,R)
[F () < v M = 1) (x| + R [lx, = x4 [
Proof:

Using Taylor’s formula , we have

1
F (x) (s) = IO [F" (X + (X, - X)) — F (x, = 1)I(x, — x,.1) (s) dy
1b
=-Ap {) [k py O x0T (x,(0) — x,.,(H)]dtdy
a

p -2

1b
=-Ap [ [K(s)[Yp, 0 x,0 (0] [x,(0) — x,,(0] ydtdy
0a i=0
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Where p,(y,t) = x,,(t) + y (X, — X,; ) and we have used the inequality,

p -
a' —b!'=(Y a*'b") (a-b)abeR
i=0

Since x, ;, X, € B (x,,R) for each y € [0,1], p, (V,,) € B(xp R),
Then,

|| Pn (Y)”S ||x0 || + R. Con;equently,
p ° . .

Fea = [1p N CE s |+ R E ) o= |
1 =

2
< |7\‘|p(p _1) [ ||X0 ||+ R ]P'z || Xy = Xy ”2

2
= (p-Da [x,— x|’
_ 4.7
2%, I+ R)

1
— MP - 1) (x| +R) "2 x, = x,., [ (4.8)
2

Which completes the proof.

Next, we give the result on the existence of a solution of equation (4.2). This theorem is a modified form
of Guitierrez et al (2004), and can be stated as follows.
Theorem 9:

Let (4.6) (iv) have a positive solution with t = R being smaller solution and let
B (x, R) _C Q, then (4.2) has least one solution X" € B (x,,R).

Proof:

The proof of this Theorem follows from Guitierrez et al with some modifications.
We note that.

X0+1 = Xn - TnF(Xn) = Xn - [F(Xn)]-] FXn

X, = X — Ty F(Xy),

| ToF(xo)[<n
S ”Xl — X ” = ”To F(x, ||< n<R by (4.6) (1).
and x; € B (X, R).

From (4.7)
(p—Da |x;-x[*=abn

IF &) ls ———

2([[xo[+R)

And therefore
| %, - x| < abh(a) 1

Then by Lemma 5
” X - X0||< ” X = Xl” +|| X - Xo”

abh (a) n
(1 + abh (2)) n <R,

IN A
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It follows that x, € B(x, R), By induction, we have that
| 0 =%, | < @@bh@)™ || x, - x| (4.9)

In addition by triangle inequality, we also have

n-1

| %0 - %ol < (L(abh())' 2)||X1 = %[ < (X @bh@Hn <
{=

1-abh

Consequently, x, € B (x,, R) for all n >0. Next we prove that {x, } is a Cauchy sequence.
From (4.6) (i) to (iv) and (4.9).
=% | < x |41 X 1= X o]+ ] %= x|

x X

n+m ntm ~ “n+m 1 n+m

< [(abh(a) ™™ (abh(a))™* + ...+ a' bh (a) "]||x, — %, ||

1 — (abh(a))
=(abh(a))" ———
1 - abh(a)

then, by letting m = =, we have |x" — x, || <(abh(a))" n

1 abh(a)
Since lim x,, = x" and abh(a) <I.
m => o
Finally, forn = 0

Ix" =% [l<

1 abh(a)

And x" € B(x,, R). also from (4.9)
[Fel< M @ DA %o |+ R [ % %

Asn = «, we obtain F(x) = 0 and x" is a solution of F(x) = 0.
Application of Newton’s Method to Fredholm Nonlinear Integral Equation.:

We illustrate the theoretical result of section 4 with the following example consider the nonlinear integral
equation of fedholm types and second kind.
1
X(s) 0.075sin(zs) + 1/5 [ cos (ms)sin (ms) x (t)s dt, s € [0,1] 5.D
0
Let X = C[ 0,1] be a space of continuous function defined on the interval (0,1) with the max norm and let

F: X X be an operator defined by.

1
F (x) (s) = x(s) — 0.075 sin (ns) + 1/5 [ cos (ms) sin (ws)x(t)’ dt, s € [0,1] (5.2)
0
By differentiating (5.2)
1
F (x)y (s) =y (s) — 3/5 cos (ns) [ sin(mt)x (t)* y (t) dt (5.3)
0

Which by section 4 gives.
1

A=1/5,N=max | |sin(nt)|dt=1, M= ApN= 3/5
0

Choosing x, (s) = 0 as a starting point,
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[F (x) || = 0.075, and from (5.3)
F' (x;) y(s) =y (s) giving,

Fix,) = 1 (5.4)

From section 4
To verify [ x,)]" assuming that To < || Ty|| = 1 then
”TOF(XO)”S 0.075 = n

Now, the equation (4.6) (iv) becomes.

126 -2t +0.15=0

This equation has two positive roots , the smaller one is R = 0.075255....
By theorem 6, (5.1) has a solution in the ball B (x, , R).

From (4.4), we defined the modified Newton’s method by

X8 =x,(s) - T, F (x,) ,n >0...55

With the function x, (s) as a starting point. First, we set
1
A, = [ sin (nt) x, (t)° dt
0

Then

X, = 0.075sin (ms) + 1/5 A, cos (@s) ,

And we obtain the following approximations :

X, (s) = 0.075sinms.

X, (s) = 0.075sins + 3.1640625x107 cosns

X, (s) =0.075sinms + 3.1640306x10~° cosns

X, (s) = 0.075sinmts + 3.16406306x10”° cosns

this implies that the modified Newton’s method converges to the solution
x" (s) =0.075sinms + 3.16406306x10° cosms.
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