Advances in Natural and Applied Sciences, 3(2): 265-272, 2009 ISSN 1995-0772

© 2009, American Eurasian Network for Scientific Information This is a refereed journal and all articles are professionally screened and reviewed

ORIGINAL ARTICLE

Application of the Fixed Point Iterative Procedure to Newton's Method

Okereke, C. Emmanuel

Department of Mathematics/Statistics/Comp. Science Michael Okpara University of Agriculture, Umudike Abia State.

Okereke, C. Emmanuel: Application of the Fixed Point Iterative Procedure to Newton's Method: *Adv. in Nat. Appl. Sci.*, 3(2): 265-272, 2009.

ABSTRACT

Let F be an operator mapping a set X into itself. A point $x \in X$ is called a fixed point of F if x = F(x). Hence finding a fixed point on an operator F is equivalent to obtaining a solution of f(x) = 0 By this research work, we consider the contraction mapping principle and its application in the solution of the non linear integral equation of radiative transfer.

Key words: Fixed Point, Newton's method, Convergence, Fredholm nonlinear integral equation.

Introduction

We now consider the Newton's method of solution for integral equations, first, we consider the linearization of equations.

Linearization of Equations:

Let F be a Fretchet differentiable operator mapping a subset of a Banach space X into a Banach space Y.

Consider the equation

$$F(x) = 0 \tag{1.1}$$

The principle method for constructing successive approximations x_n to the solution x^* of (1.1) is based on successive linearization of the equation. If the approximation to x_n exists, then x_{n+1} , can be computed by replacing

(1.1) by
$$F'(x_n) + F'(x_n)(x_{n+1}! - x_n) = 0$$
 (1.2)

if
$$[F'(x_n)]^{-1} \in L(Y,X)$$
, then approximation $X_n + 1$ is given by $x_{n+1} = x_n - [F'(x_n)]^{-1} F'(x_n)$, $n \ge 0$ (1.3)

The iteration procedure generated by (1.3) is known as Newton- kantrovich method.

Convergence of Newton's Method:

We seek the condition for which the iteration sequence $\{X_n\}$ defined by (1.3) will converge to a solution $x = x^*$ of the nonlinear equation. F (x) = 0

Corresponding Author: Okereke, C. Emmanuel, Department of Mathematics/Statistics/Comp. Science Michael Okpara University of Agriculture, Umudike Abia State.

E-mail: okereemm@yahoo.com

Define the operator G by

$$G(x) = x - (F'(x))^{-1} F(x)$$
 (2.1)

Then, the Newton - kantrovich method may be regarded as the usual iteration method,

$$X_{n+1} = G(x_n), n \ge 0$$
 (2.2)

For approximating the solution x* of the equation

$$x = G(x) \tag{2.3}$$

Suppose that

$$\operatorname{Lim} \, \mathbf{x}_{\mathbf{n}} = \mathbf{x}^{*}, \\
\mathbf{n} \to \infty$$
(2.4)

we investigate under what conditions of F and F' the point x^* is a solution of (1.1)

Proposition 1 Rall (1969):

If F is continuous at $x = x^*$, then we have

$$F(x^*) = 0 ag{2.5}$$

Proof:

The approximation x_n , satisfies the equation

$$F(x_n) (x_{n+1} - x_n) = F(x_n)$$
 (2.6)

Since the continuity of F at x^* follows from the continuity of F', and taking the limit as $n \rightarrow \infty$ in (2.6), (2.5) is obtained.

Proposition 2 Argyrols (2005):

If
$$\| F'(x) \| \le b$$
 (2.7)

in some closed ball which contains $\{x_n\}$, then x^* is a solution of F(x) = 0.

Proof:

As $x_n \rightarrow x^*$ we arrive at the result.

$$\operatorname{Lim} F(x_n) = F(x^*)
n \to \infty$$
(2.8)

And since

$$||F(x_n)|| \le b||x_{n+1} - x_n||$$
 (2.9)

(2.5) is obtained by taking the limit as $n \rightarrow \infty$ in (2.9)

Proposition 3 Argyros (2005):

If
$$\| F'(x) \| \le k...2.10$$

In some closed ball $B(x_0, r)$, $0 < r > \infty$ which contains $\{x_n\}$, then x^* is a solution of the equation (1.1).

Proof:

$$\|F'(x) - F'(x_0)\| \le k \|x - x_0\| \le k r$$
 (2.11)

So the condition of proposition 3.9 holds with

$$b = \|F'(x_0)\| + Kr \tag{2.12}$$

It should be noted that under the hypothesis of the foregoing proposition, the convergence of the Newton sequence $\{x_n\}$ implied the existence of a solution $x = x^*$ of F(x) = 0.

It follows that if the existence and convergence of Newton sequence can be established, Hhen it is certain that the equation (1.1) has a solution.

Nest, we give the statement of the theorem of convergence of Newton's method in Banach spaces as formulated by the kantrovich. Theorem below.

Consider the Newton sequence (x_n) sating from some point x_0 it is assumed that $[F^1(x_0)]^{-1}$ exists and permits the calculation of the next point,

$$\mathbf{x}_1 = \mathbf{x}_0 - [\mathbf{F}'(\mathbf{x}_0)]^{-1} \mathbf{F}(\mathbf{x}_0)] \tag{2.13}$$

and there exists constants $B_{\scriptscriptstyle 0}$, $n_{\scriptscriptstyle 0}$ such that

$$\| [F (x_0)]^{-1} \| \le B_0$$
 (2.14)

$$\|\mathbf{x}_1 - \mathbf{x}_0\| \le \mathbf{n}_0$$
 (2.15)

respectively

Theorem 4 (Kantrovich's theorem) Rall (1969), Argyros (2005):

$$\text{IF } \parallel F''(x) \parallel \leq k \tag{2.16}$$

In some closed ball B $(x_{0},\;r)$ and h_{0} = $\;B_{0}\;\eta_{\;\;0}\;k\;{\mbox{\tiny \leq}}\;{\mbox{\tiny $1/2$}}\;,$

The Newton sequence $\{x_n\}$, converges to a solution x^* of equation (1.1) which exist in $B(x_0,r)$ provided that

$$r \ge r_0 = 1 - \sqrt{(1 - 2h_0)} - \frac{1}{h_0} \eta_0$$
 (2.17)

Modified Newton's method:

Methods for computing the solutions of nonlinear operator equations are related in some way to Newton's method or method of successive approximations.

We consider the sequence,

$$X_{n+1} = X_n - L_n^{-1} y_n$$
 (3.1)

Where , L_n^{-1} is an approximations of $[F'(x_n)]^{-1}$ and y_n is close to $F(x_n)$ respectively could be used to describe a variant of Newton's method.

A similar process leads to the modified Newton's method,

$$X_{n+1} = X_n - [F'(X_0)]^{-1} F(X_n)$$
(3.2)

This procedure has as advantage of the reduction in labour of calculating $F'(x_0)$ and its inverse $[F'(x_0)]^{-1}$ since this is done once and for all, after which the fixed point of the modified Newton iteration procedure is sought by successive approximations.

Existence of Solutions of Fredhom Nonlinear Integral Equations by Newtons Method:

In this section, we consider the existence of solution for a nonlinear integral equation of the type,

$$x(s) = f(s) + \lambda \int_{a}^{b} K(s,t) x(t)^{p} dt, s \in (a, b], p \ge 2$$
 (4.1)

where λ is a real number, the kernel K(s,t) and f(s) are numbers also following the analysis of Guitierrez. et al., (2004), we express (4.1) in the form

$$F(x) = 0 (4.2)$$

where F:
$$\Omega$$
 C $_X$ \rightarrow Y is a nonlinear operator defined by
$$F(x)(s) = x(s) - f(s) - \lambda \int_{a}^{b} K(s,t) \ x \ (t)^{p} \ dt, \ p \ge 2$$
 (4.3)

and X = Y = C[a,b] is the space of continuous function on the interval [a, b] equipped with the max norm.

$$\|x\| = \max \{ |x(s)| : s \in [0,1] \}.$$

We apply the modified form of Newton's method defined by

$$x_{n+1} = x_n - T_0 F(x_n), n \ge 0$$
 (4.4)

where T₀ is the inverse of the linear operator defined from X to Y by

$$F'(x_0)y(s) = y(s) - \lambda p \int_{a}^{b} K(s,t)x(t)^{p-1} y(t) dt, x \in [a,b], y_{\epsilon} X$$
(4.5)

$$F'(x_0)y(s) = y(s) - \lambda p \int_a^b K(s,t)x(t)^{p-1} y(t) dt, x \in [a,b], y_{\varepsilon} X$$
Let $N = \max \int_a^b |K(s,t)| dt$ and x_0 be a function in such that $T_0 = [F'(x_0)]^{-1}$

exists and $\|T_0 F(x_0)\| < \eta$

$$< \eta$$
 and $M = |\lambda| pN$.

Next, we assume the following conditions, Gutierrez et al., (2004)

(i)
$$\eta < R, R$$
 a real number
(ii) $a=M(\|x_0\|+R)^{p-1} < 1$
(iii) If we denote $b=\frac{(p-1)\eta \text{ and } h(t)}{2(\|x_0\|+R)} = \frac{1}{1-t}$
Than abh (a)<1
(iv) $2(\eta-t)+M(\|x_0\|+t)^{p-2}[(p-1)\eta t-2(\eta-t)(\|x_0\|+t)=0.]$

We will consider the following Lemmas:

Lemma 5 Ezquerro and Hermandez (2004):

From (i) to (iv) of (4.6), it follows that

$$\sum_{i=0}^{n} (abh(a))^{i} \eta < \frac{\eta}{1 - abh(a)} = R$$

Theorem 6 (Banach Lemma on Invertible Operators), Argyros (2005):

If T is a bounded linear operation in X, T^{-1} exists if and only if there is a bounded linear operator P in X such that P^{-1} exists and $\|1 - PT\| < 1$.

LEMMA 7 Guitierrez. et al (2004) evanglies:

If B (x_0, R) C $\subseteq \Omega$, then for all x C B (x_0, R) , $[F'(x)]^{-1}$ exists and $\|[F'(x)]^{-1}\| \le h$ (a).

Proof:

Applying theorem 3.13, and noting that

$$(1 - F'(x)) y(s) = \lambda p \int_{a}^{b} K(s,t) x(t)^{p-1} y(t) dt,$$

Then.

$$\begin{array}{ccc} \left\| \begin{array}{cc} 1 & -F'(x) \end{array} \right\| \leq \left| \begin{array}{c} \lambda \left| \hspace{-0.5em} p N \hspace{-0.5em} \right\| x \hspace{-0.5em} \right|^{p\text{-}1} \\ \leq M \end{array} \left(\left\| \begin{array}{c} x_0 \end{array} \right\| \hspace{0.5em} + \hspace{0.5em} R \right)^{\hspace{0.5em} p\text{-}1} = a \hspace{-0.5em} < \hspace{0.5em} 1 \end{array}$$

Therefore,
$$[F'(x)]^{-1}$$
 exist and $||F'(x)^{-1}|| \le 1 = h(a)$

$$\frac{1-a}{1-a}$$

Applying Theorem 6, and noting that (1-F'(x)) $y(s) = \lambda p \int_{a}^{b} K(s,t)x(t)^{p-1} y(t)dt$.

Then.

$$\begin{array}{l} \left\| 1\text{-}F'(x) \right\| \leq \ \left| \ \lambda \right| p N \left\| \ x \right\|^{p\text{-}1} \\ \leq \ M \ \left(\left\| x_0 \right\| \ + \ R \right)^{p\text{-}1} = a < 1. \end{array}$$

Therefore,
$$[F'(x)]^{-1}$$
 exists and $||F'(x)|^{-1}|| \le 1 = h$ (a).

The above Lemma guaratees the existence of T_0 for some $x_0 \in X$, where T_0 is the inverse of the linear operator F_0 (x_n) at n=0

Lemma 8 Guitierrez et al., (2004):

If B $(x_0, R) \subseteq \Omega$ and assumptions (i) to (iv) of (4.6) hold,

Then for x_n , $x_{n-1} \in B(x_0,R)$

$$\|F(x_n)\| \le \frac{1}{2} M(p-1) (\|x_0\| + R)^{p-2} \|x_n - x_{n-1}\|^2$$

Proof:

Using Taylor's formula, we have

$$F(x_{n})(s) = \int_{0}^{1} [F'(x_{n-1} + y(x_{n} - x_{n-1})) - F'(x_{n} - 1)](x_{n} - x_{n-1})(s) dy$$

$$= -\lambda p \int_{0}^{1} \int_{0}^{1} k(s,t) p_{n}(y,t)^{p-1} x_{n-1}(t)^{p-1}](x_{n}(t) - x_{n-1}(t)] dtdy$$

$$= -\lambda p \int_{0}^{1} \int_{0}^{1} K(s,t) \left[\sum_{i=0}^{p-2} p_{n}(y,t)^{p-2-i} x_{n-1}(t) \right] [x_{n}(t) - x_{n-1}(t)]^{2} ydtdy$$

Where
$$p_n(y,t)=x_{n-1}(t)+y\ (x_n-x_{n-1}\)$$
 and we have used the inequality, $a^{p-1}-b^{p-1}=(\sum\limits_{i=0}^{p-2-1}b^i)\ (a-b)\ a,b\ \varepsilon\ R.$

Since x_{n-1} , $x_n \in B$ (x_0,R) for each $y \in [0,1]$, $p_n(y, y) \in B(x_0,R)$,

$$\|p_n(y)\| \le \|x_0\| + R$$
. Consequently,

$$\begin{array}{l} \parallel p_{_{n}}\left(y\right) \parallel \leq \parallel x_{_{0}} \parallel + R. \ Consequently, \\ \parallel F(x_{_{n}}) \parallel \leq \frac{ \mid \lambda \mid p \mid N \quad (\sum\limits_{i} (\parallel x_{_{0}} \parallel + R)^{p-2-i} \parallel x_{_{n-1}} \parallel^{i}) \ \parallel x_{_{n}} - x_{_{n-1}} \parallel^{2} \\ \hline \frac{1}{2} \end{array}$$

$$\leq \left| \frac{\lambda |p(p-1)|^2}{|x_0|} \right| + R^{p-2} \|x_n - x_{n-1}\|^2$$

$$= \frac{2}{(p-1) a} \|x_n - x_{n-1}\|^2$$

$$= \frac{2}{2(\|x_0\| + R)} (4.7)$$

$$= \frac{1}{2} M(P-1) (\|\mathbf{x}_0\| + R)^{p-2} \|\mathbf{x}_n - \mathbf{x}_{n-1}\|^2$$
(4.8)

Which completes the proof.

Next, we give the result on the existence of a solution of equation (4.2). This theorem is a modified form of Guitierrez et al (2004), and can be stated as follows.

Theorem 9:

Let (4.6) (iv) have a positive solution with t = R being smaller solution and let B (x_0, R) _C Ω , then (4.2) has least one solution $x^* \in B(x_0, R)$.

Proof:

The proof of this Theorem follows from Guitierrez et al with some modifications.

$$X_{0+1} = X_{n-1} T_n F(X_n) = X_n - [F(X_n)]^{-1} FX_n$$

$$x_1 = x_0 - T_0 F(x_0), ||T_0 F(x_0)|| < \eta$$

so
$$||x_1 - x_0|| = ||T_0|| F(x_0)|| < \eta < R$$
 by (4.6) (i).

and $x_1 \in B$ (x_0, R) .

From (4.7)
$$\|F(x_1)\| \le \frac{(p-1)a}{2(\|x_0\| + R)} \|x_1 - x_0\|^2 = ab\eta$$

And therefore

$$\| \mathbf{x}_2 - \mathbf{x}_0 \| \le abh(a) \eta$$

$$\| \mathbf{x}_2 - \mathbf{x}_0 \| < \| \mathbf{x}_2 - \mathbf{x} \mathbf{1} \| + \| \mathbf{x}_1 - \mathbf{x}_0 \|$$

$$\leq$$
 abh (a) $\eta + \eta$

$$\leq$$
 (1 + abh (a)) $\eta < R$,

It follows that
$$x_2 \in B(x_0, R)$$
, By induction, we have that $\|x_n - x_{n-1}\| \le (abh(a))^{n-1} \|x_1 - x_0\|$ (4.9)

In addition by triangle inequality, we also have

Consequently, $x_n \in B$ (x_0, R) for all $n \ge 0$. Next we prove that $\{x_n\}$ is a Cauchy sequence. From (4.6) (i) to (iv) and (4.9).

$$\begin{split} & \left\| \left\| x_{n+m} - \left\| x_{n} \right\| \right\| \leq \left\| \left\| \left\| x_{n+m} - \left\| x_{n+m-1} \right\| \right\| + \left\| \left\| \left\| x_{n+m-1} \right\| - \left\| x_{n+m-2} \right\| \right\| + \ldots + \left\| \left\| \left\| x_{n} - \left\| x_{n-1} \right\| \right\| \right\| \\ & \leq \left[(abh(a)^{m+n-1} \left\| (abh(a))^{m-2} + \ldots + \left\| a^{-1} \right\| bh \right\| (a)^{n} \right] \left\| \left\| x_{1} - x_{0} \right\| \right\| \end{split}$$

$$= (abh(a))^n \qquad \frac{1-(abh(a))}{1-abh(a)} \quad \eta$$

then, by letting
$$m \rightarrow \infty$$
, we have $\|x^* - x_0\| \le (abh(a))^n$ $\frac{\eta}{1 \ abh(a)}$

Since $\lim x_m = x^*$ and abh(a) < 1.

Finally, for n = 0

$$\|\mathbf{x}^* - \mathbf{x}_0\| < \frac{\eta}{1 \text{ abh(a)}}$$

And
$$x^* \in B(x_0, R)$$
. also from (4.9) $\|F(x_n)\| \le {}^{-1}/{}_2 M (p 1)(\|x_0\| + R)^{p-2} \|x_n x_{n-1}\|^2$

As n $\rightarrow \infty$, we obtain $F(x^*) = 0$ and x^* is a solution of F(x) = 0.

Application of Newton's Method to Fredholm Nonlinear Integral Equation.:

We illustrate the theoretical result of section 4 with the following example consider the nonlinear integral equation of fedholm types and second kind.

$$X(s) \ 0.075\sin(\pi s) + 1/5 \int_{0}^{1} \cos(\pi s)\sin(\pi s) \ x \ (t)s \ dt, \ s \in [0,1]$$
(5.1)

Let X = C[0,1] be a space of continuous function defined on the interval (0,1) with the max norm and let

F: X X be an operator defined by.

$$F(x)(s) = x(s) - 0.075 \sin(\pi s) + 1/5 \int_{0}^{1} \cos(\pi s) \sin(\pi s) x(t)^{3} dt, s \in [0,1]$$
(5.2)

By differentiating (5.2)

$$F'(x) y(s) = y(s) - 3/5 \cos(\pi s) \int_{0}^{1} \sin(\pi t) x(t)^{2} y(t) dt$$
(5.3)

Which by section 4 gives.

$$\lambda = 1/5, N = \max \int_{0}^{1} |\sin(\pi t)| dt = 1, M = \lambda pN = 3/5$$

Choosing x_0 (s) = 0 as a starting point,

$$\|F(x_0)\| = 0.075$$
, and from (5.3) $F'(x_0) y(s) = y(s)$ giving,

$$F'(x_0) = 1 ag{5.4}$$

From section 4

To verify
$$[x_0]^{-1}$$
 assuming that $To \le ||T_0|| = 1$ then $||T_0F(x_0)|| \le 0.075 = \eta$

Now, the equation (4.6) (iv) becomes.

$$1.2t^3 - 2t + 0.15 = 0$$

This equation has two positive roots, the smaller one is R = 0.075255...

By theorem 6, (5.1) has a solution in the ball B (x_0, R) .

From (4.4), we defined the modified Newton's method by

$$X_{n+1}(s) = x_n(s) - T_0 F(x_n), n \ge 0...5.5$$

With the function x_0 (s) as a starting point. First, we set

$$A_n = \int_0^1 \sin (\pi t) x_n (t)^3 dt$$

Then

 $X_{n-1} = 0.075\sin(\pi s) + 1/5 A_n \cos(\pi s)$,

And we obtain the following approximations:

 $X_1(s) = 0.075 \sin \pi s$.

 $X_2(s) = 0.075 \sin \pi s + 3.1640625 \times 10^{-5} \cos \pi s$

 X_3 (s) =0.075sin π s + 3.1640306x10⁻⁵ cos π s

 X_4 (s) = 0.075sin π s + 3.16406306x10⁻⁵ cos π s

this implies that the modified Newton's method converges to the solution

 x^* (s) =0.075sin π s + 3.16406306x10⁻⁵ cos π s.

References

Ahues, M., 2004. Newton methods with Holder derivative, Numerical Functional Analysis and 2.Optimization, 25(5): 6 pp: 379-395.

Atman, M., 1977. Contractor and contractor directions, Theory and Applications, Marcel Dekker, New York Argyros, I.K., 1985. Quadratic equations and applications to Chandrasekhar's and related equations, Bull . Australian Math. Soc., 32: 275-297.

Argyros, I.K., 2005. Approximate Solution of Operation Equations with Applications, World Scientific Publishing Co. Hachersack, New Jersey USA.

Atkinson, K.E., 1992. A survey of numerical methods for solving nonlinear integral

Guiterrez, J.M., M.A. Hermadez and M.A. Salanova, 2004. On the approximate solution of some freholm Integral eqns by Newton is method South West Journal of Pure and applied amthematics, Issue 1pp: 1-9.