Advances in Natural and Applied Sciences, 3(2): 178-182, 2009 ISSN 1995-0772

© 2009, American Eurasian Network for Scientific Information This is a refereed journal and all articles are professionally screened and reviewed

ORIGINAL ARTICLE

On the Existence of Solution of Nonlinear Equations by Method of Successive Approximations

¹Emmanuel C. Okereke and ²Eno D. John

¹Department of Mathematics/ Statistics/Comp. science, College of Natural and Applied Sciences, Michael Okpara University of Agriculture.

Emmanuel C. Okereke and Eno D. John, On the Existence of Solution of Nonlinear Equations by Method of Successive Approximations; : Adv. in Nat. Appl. Sci., 3(2): 178-182, 2009.

ABSTRACT

This paper provides convergence analysis for a type of fixed point iterations in Banach spaces. By modifying a contractive condition in (Ezquerro, J. and A. Hernandez, 2004), we obtain an error estimate that gives precise information of the location of solution for a nonlinear operator equation satisfying such condition. Finally an illustration is given with an application to a nonlinear integral equation of Fredholm type and second kind

Key words: Banach spaces, Frechet differentiability, Pichard's iteration, radius of convergence, Fredholm integral equations.

In this paper, we want to established the existence of a solution ${}^{\mbox{$m{\phi}$}}$ * of a nonlinear equation.

$$F(\Phi) = 0 \tag{1}$$

where F is a Frechet-differential operator defined on an open convex domain D of a Banach space X with values in a Banach space Y.

We consider the method of successive approximations

$$\Phi_{m+1} = \Phi_m - F(\Phi_m), m = 0,1,2....$$
 (2)

Which is also known as Picard iteration (Ezquerro, J. and A. Hernandez, 2004). The Picard iteration operator for (2) can be defined as

$$G(\Phi) = \Phi - F(\Phi) \tag{3}$$

and

$$G'(\Phi) = I - F'(\Phi) \tag{4}$$

Let us assume the following conditions for ${}^{\displaystyle {\Phi_0} \epsilon D}$:

$$G'(\Phi_0) = I - F(\Phi_0) = 0, F(\Phi_0) \neq 0$$
 (5)

where I is an identity operator.

Corresponding Author: Okereke, C. Emmanuel, Department of Mathematics/Statistics/Comp. Science College of Natural and Applied Sciences. Michael Okpara University of Agriculture, Umudike Abia State. Email: okereemm@yahoo.com

² Department of General Studies, Akwa Ibom State Polytechnic, Ikot Ekpene-Akwa Ibom State.

$$I = F'(\Phi_0) \tag{6}$$

by (5)

$$||F'(\Phi) - F(\Phi_0)|| \le a||\Phi - \Phi_0||, a > 0$$
 (7)

and

$$||F'(\Phi) - I|| \le a||\Phi - \Phi_0||$$
 (8)

by (6) and (7).

$$\|H(\Phi)\| = \|H(\Phi) - H(\Phi_0)\| \le H'(\Phi)\|\Phi - \Phi_0\| \le ar_0^2$$

Since

$$G(\Phi) - \Phi_0 = (H(\Phi) - F(\Phi_0)),$$

$$\|G(\Phi) - \Phi_0\| \leq \|H(\Phi) - H(\Phi_0)\| + \|F(\Phi_0)\| \leq \alpha r_0^2 + \eta = r_0$$

Hence,
$$G(\bar{\mathbb{U}}) \subseteq D$$
.

Now for $\Phi \in \overline{\mathbf{U}}$,

$$G'(\Phi) = 1 - F'^{(\Phi)} = H(\Phi)$$

So that

$$\|G'(\Phi)\| \leq \omega(r_0) = ar_0 \leq ar_1 \leq 1.$$

Hence, G is a contraction on $\bar{\mathbb{U}}(\boldsymbol{\varphi}_0, r_0)$.

Next, by Banach fixed point theorem (Krezig, E., 1979) For m. $n \ge 1$

$$\|\Phi_{m+n} - \Phi_m\| = \frac{1 - \omega(r_0)^n}{1 - \omega(r_0)} \omega(r_0)^m \|\Phi_1 - \Phi_0\|$$

And since
$$\omega(r_0) < 1$$
 then $1 - \omega(r_0)^n < 1$

Thus,

$$\|\Phi_{m+n} - \Phi_m\| \le \frac{\omega(r_0)^m}{1 - \omega(r_0)} \|\Phi_1 - \Phi_0\|$$

By letting $n \to \infty$

$$\| \varPhi_m - \varPhi^* \| \leq \frac{\omega(r_0)^m}{1 - \omega(r_0)} \| \varPhi_1 - \varPhi_0 \|.$$

Finally for m=0,

$$\|\Phi^* - \Phi_0\| \le \frac{\eta}{1 - \omega(r_0)} = r_0$$

This show that $\Phi^* \in \bigcup$ and $F(\Phi^*) = 0$.

2.0 Convergence of Method of Successive Approximations (2)

In this section, we give the convergence analysis of method of successive approximations (2).

2.1 Local Convergence

Lemma 2.1

Let $\Phi^* \in D$ be a zero of F and suppose there exist r>0 such that

i) F is differentiable on an open ball $U(\Phi^*,r) = \{\Phi^* \in X : \|\Phi - \Phi^*\| < r\}$

$$\omega = \|1 - F'(\Phi)\| < 1$$

Then for all $\Phi_0 \in U(\Phi^*, r)$, the sequence defined by (Ahues, M., 2004) converges to Φ^*

Proof:

Let
$$\Phi_0 \in U(\Phi^*, r)$$
 and suppose $\Phi_m \in U(\Phi^*, r)$ where,

$$\Phi_m(t) = \Phi^* + t(\Phi_m - \Phi^*), t \in [0,1]$$

Now,

$$F(\Phi_m) = F(\Phi_m) - F(\Phi^*)$$

And by (2) and Taylor's formula

$$\|\Phi_{m+1} - \Phi^*\| \le \omega \|\Phi_m - \Phi^*\| < r$$

Thus, $\Phi_{m+1} \in \bigcup (\Phi^*,r)$. Since $\omega < 1$, the sequence defined by (2) converges to Φ^*

2.2 semilocal convergence

The result below gives condition for the existence of a unique solution of (1) for a given and also the convergence of the sequence defined by method of successive approximations (2).

Lemma 2.2

Suppose the following holds for $D, F, \Phi_0 \in D, a > 0$ and η :

$$\int_{D} \| \Phi_1 - \Phi_0 \| \le \eta$$

$$\tilde{U} = \{\Phi \in X: \|\Phi - \Phi_0\| \le r_0\} \subseteq D \text{ and }$$

$$U = \{ \Phi \epsilon X \colon ||\Phi - \Phi_0|| \le r_0 \} \subseteq D$$

Where r_0 is the smallest root of the equation

$$ar^2 - r + \eta = 0$$

iii) $F': U \to L(X,X)$ exists and satisfy (7), then F has a unique square root Φ^* in U and for all $m \ge 0$

$$\|\varPhi_m - \varPhi_0\| \leq \frac{\omega(r_0)^m}{1 - \omega(r_0)} \eta$$

Where
$$0 \le \omega(r_0) = ar_0 < 1$$
.

Proof:

Let $f: (0, \infty) \to \Re$ be defined by

$$f(r) = (\omega(r) - 1)r + \eta.$$

Observe that $f(0) = \eta$ and f' = 0 for some $r_1 = \frac{1}{2a} \ge 0$, at which

$$f(r_1) = \eta - \frac{r_1}{2} \le 0$$
 and $f(0)F(r_1) \le 0$

Thus by intermediate value theorem, r_0 exists in the interval $0 < r_0 < r_1$

Let us define for $\Phi \in \overline{U}$,

$$G(\Phi) = \Phi - F(\Phi)$$

And define another operator.

$$H(\Phi) = F(\Phi_0) + (\Phi - \Phi_0) - F(\Phi),$$
(9)

see Ahues (2004), Argyros(2006),

Noting that $F(\Phi^*) = 0$ implies $\Phi^* = G(\Phi^*)$.

By (9),
$$H(\Phi_0) = 0$$
 and for all $\Phi \in \tilde{U}$

$$H'(\Phi) = 1 - F'(\Phi)$$

$||H'(\Phi)|| = ||1 - F'(\Phi)|| \le ar_0$

References

Ahues, M., 2004. A Note on Perturbed Fixed slope Iteration, Appl. Math. Letters, 18(4): 375-380.

Ahues, M., 2004. Newton Method with holder Derivatives, Numerical Functional Analysis and optimization, 25(5): 379-395.

Argyros, I.K., 2006. On The Convergence of fixed Slope iterations, Punjab University Journal of Mathematics, 38: 39-44.

Ezquerro, J. and A. Hernandez, 2004. A modification of The Convergence Conditions for Picard's Iteration, Comp. and applied Maths., 23(1): 55-65.

Kalinde, A.K., Solving some Nonlinear Equations by Successive Approximations int'l Journal Mathematics and Mathematical Science.

Krezig, E., 1979. Functional Analysis with Applications, John Wiley and Sons, New York.

Rall, L.B., 1979. Computational Solution of Nonlinear Operator equations, John Wiley and Sons, New York.