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ABSTRACT

Let F be an operator mapping a set X into itself. A point x є X is called a fixed point of F if x = F(x).
Hence finding a fixed point on an operator F is equivalent to obtaining a solution of  f(x) = 0. By this
research work, we consider the contraction mapping principle and its application in the solution of the non
linear integral equation of radiative transfer.
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Introduction

1.0 definition

Let F be an operator mapping a set X into itself. A point x Є X is called a fixed point of F if 

x = F(x)  1.1

Finding a fixed point of an operator F is equivalent to obtaining a solution of (1.1)

If the value x0 of X is known such that F(x0) does not differ greatly from x0, wee can naturally regard

x1 = F(x0)  1.2

As a probable improvement over x0 and the equation (1.1) leads to the generation of the sequence {xm}
of successive approximations to a fixed point x of F by the relationship

 xm+1 = F (xm) , (m $ 0)  1.3

The constructive procedure of generating the sequence {xm} is known as method of iteration.

Theory of the Contraction Mapping Principle

Theorem 2.1(the Contraction Mapping Principle) Rall (1969)

If F is an operator in a Banach space X which is a contraction mapping of     (x0, r) for B



171Adv. in Nat. Appl. Sci., 3(2): 170-177, 2009

  2.10 0 0

1
r ( )

1-
x F x r

a
  

where α is a  contraction factor for F on B (x0, r) then,

F has a fixed point x* in      (x0, r) B

x* is the unique fixed point of F in      (x0, r)B

The sequence {xm} of successive approximations defined by (1.3)
Converges to x* with 

5xm – x* 5 #  αm r0   2.2

Proof

First we show that the sequence xn є      (x0, r)B

As x1 = F (x0)  2.3

Then from (2.1)

5x1 – x0 5 = (1 – α ) r0 < r0         2.4

So x1 Є      (x0, r0)B

Assume that x0, x1, … xn – 1 , xn є      (x0, r0) and that B

5xn – x0 5 # ( 1 – αn) ro < r0           2.5

For some positive integer n
Then since 

5xn+1 - xn5 = 5F (xn) – F (xn – 1) 5 # α 5 x0 – xn – 1 5  2.6

Successive application of (2.6) gives 

5 xn+1 - xn5 # αn5 x1 – x05 = αn (1 – α)r0  2.7

and

5 xn+1 – x05 # 5 xn – x05+5 xn+1 - xn5 

#  (1 – αn) r0 + αn (1 – α )r0 = (1 – αn+1) r0 < r0  2.8

Hence {xm} is contained in     (x0, r)B

(b) Next, we show that { xm} is a Cauchy sequence and, thus has a limit point 

x* Є     (x0,r0).B

Observe that,

5xm+p – xm 5#5 xm+p -  xm+p -15 + 5 xm+p - xm5   #  1 – αp            2.9

1 – α    5xm+1 - xm5 2.10
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And by (2.7) we obtain,

5xm+p – xm * # (1 – αp)αm r0  2.11

Thus the sequence {xm} is  Cauchy . Hence, its limit x* exist in     (x0, r),B

5x* - x05=5F(x*) – F (x0) 5# α5x*-x0 5<5x* - x05  2.12

Which is impossible.

Also from (2.11)by letting p         4 the error  bound (2.2) is obtained
The proof is complete.
An immediate consequence of theorem (2.1) follows:
Suppose that bounded linear operators T, T – 1, L and a point y є X are given. 
A solution of the linear equation.

L(x) = y 2.12

Will be a fixed point of the operator F defined by 

F(x) = ( I – TL) x + Ty           2.13

If α = 5I – TL 5 < 1         2.14

Then by theorem  2.1, x* exist such that 

x* = (I – TL)x* = Ty     2.15

that is, Lx* = y exists in the ball B(x0, r), where 

r0 = (I - 5I - TL5)-15 I – TL) x0 + Ty5 2.16

for any x0 є X and x* is unique in X 

the error bound 

     5I - TL5m

5xm – x*5# )))))))))5 (I –TL)x0 + Ty5
    I -5 I-TL5 2.17

Is obtained for 

xm = (I –TL) xm-1 + Ty,    M = 1,2,3  2.18

We give an illustration with Kreszig (1989) integral equation of form 

x(t) = µ    K (t, τ) x (τ) x (τ) d τ + v (t)    2.19

b

a


               
Which is a Fredholm equation of the second kind with the Kernel K a given function on the square G = [a,b]
x [a,b].
Let us consider (3.19) in the space of continuous function C[a,b] and defined on the interval. 
J = [a,b] with the norm

5x – y 5 = max 5x(t) – y(t) 5,  tєJ    2.20
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Assuming that C [a,b] is complete and v є C [a,b]  is continuous on G, then K is a bounded function on G
such that 

Kmax # M. 2.21

Rewriting (2.19) as a fixed – point problem, we have 
x = F (x) and 

F(x(t) = v (t)  + μ     K (t, τ) x (τ)d τ 2.22

b

a


Equation  (2.2.2) defines an operator F: C [a,b]       c[a,b].

Imposing a restriction on μ so that F becomes a contraction, we have from (2.20) to (2.22)

5 F (x) – F(y) 5 # max 5 F ((x(t)) – F(y(t)) 5,   tєJ        

  # *μ*max *   K (t,τ) [x(τ) – y(τ)]*dτ  # *µ*max     *k (t, τ) ** x (τ) - y (τ) * dτ

b

a


b

a


# *μ*M5x –y 5 (b –a).

Choosing α = *μ*M (b –a) ,

  1
5 F (x) – F(y) 5 # α 5 x- y  5 . Then F is a contraction (α <1) if *μ*< )))))))))

        M(b –a) 

It does follow that F is a contraction mapping of      (x0, r0) with α = *μ*M(b – a), for some x0 and B

0 1 0

1

1
r x x r

a
   



where θ is a real number.
Hence, theorem (2.1) guarantees the existence of a fixed point x* of F in      (x0, θ)B
to which the sequence {xm} defined by

xm+1 (t) = v(t) +  μ     K (t,τ)xm(τ)dτ

b

a


Converges with 

5x* - xm 5 # αm θ 2.24

Example 
We apply the above illustration to the operator equation given by 

F(x)(s) = F(s) + λ      K (s,t) x (t) dt in the ball     (1,½),

1

0
 B

Where

(1 ),
( . )

(1 ),

s t s t
K s t

t s t s

 
   
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Let M = max *         K(s,t) dt*

1

s [0,1] 0


then 

5F (x) – F (y) 5# *λ*M5x – y 5      λ   5x – y 5.
8



For   *λ* # 1

5F (x) – F (y) 5 # 0.1255x – y5 

giving α = 0.125. and for x0 = f(s) = 1

  1
r0 = )))))))))) 0.125 # 0.143 < r,

  1 – 0.125 

So that there exists a fixed point x*  of F in     (1,0,) to which the sequence {xm) defined by B

xm + 1 (s) = f(s) + λ      k (s,t) xm (t) dt, m = 0,1,2,3, 2.25

1

 0


Converges with 

5x* - xm5 # 0.125m 0.143.

3 Iterative Estimate of Solutions of Nonlinear Integral Equations

Introduction

This section is concerned with the application of iteration methods discussed in the previous section to
establish the location and existence of approximate solutions of some nonlinear integral equations of Fredholm
type and second kind. In addition, we will obtain sequences of iterates. 

Application of the Contraction Mapping Principle to Nonlinear Integral Equation of Rediative Transfer
The ideas of section 2 will be applied to the nonlinear equation 

x(s) = λ x (s)                dt + 1, s Є [0,1]] , and λ > 0    3.1

1

 0

( )

1

sx t

s 
Known as Chandrasekhar’s integral equation, Ahues (2004). The equation of the type (3.1) is associated

with the equation arising from the theory of radiative transfer.
Our intention will be to obtain the locations, the existence and uniqueness of the solution of (4.1.1) in the

ball B (x0, r) 
We note that equation (3.1) suggests the direct iteration.

1

1

 0

( )
( ) ( ) 1

1
m

m m

x t
x S x s s dt

s
  


With x0 (s) = 1, 0 # s # 1  

This indicates that  

x1 (s) = λ s1n ( 1  + 1/s)  + 1,0 # s# 1    3.3
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the exact calculate of x2 (s)  however involves the evaluation  of the integral 

 3.4 

1

 0

(1 1/ ) , [0,1]
1

s
In s dt s

s
 


Which leads to analytic complexities. However by (3.3) and (3.4) , we have, 

5x1 – x05 = max 5x1(s) – x 0(s) 5 = λ1nn2  3.5
              

Or 

5x1 – x05 < 0.6931 λ. 3.6

Expressing (3.1) as a fixed – point problem in C [0,1] , we obtain 

F (x) (s) = λx(s)                        3.7

1

 0

( )
1

1

sx t
dt

s



  
which is a contraction mapping of the ball      (1, r) with the contraction factor α, and B

 3.8
1

2.
1

r In
a




The existence of the solution x* (s) of (3.1) and the convergence of the  sequence xm generated by (3.2)
to it follows from contraction mapping principle (Theorem 2.1).

To determine the value of α , note that.
1 1

 0  0

( ) ( )
( ) ( ) [ ( ) ( ) ]

1 1

x t y t
F x F y s x s dt y s dt

s s
  

  

3.9

1

 0

1

 0

11 {[ ( ) ( )] [ ( ) ( )]2 1

1
[ ( ) ( )] [ ( ) ( )] }

1

s x s y s x t y t dt
s

x s y s x t y t dt
s

   


 





If x,y є      (1,r), then B

5x + y 5 # 2 (1 + r) 3.10

And 

Max  x(t) – y(t)*dt* # 2(1 + r)1n2 3.11

It follows from (3.11) that 

5 F (x) – F (y) 5# 2 λ (1 + r) 1n2 5 x – y 5 3.12

And F is a contraction mapping of the ball (1,r) if B
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α = 2 λ(1 + r) 1n2 < 1   3.13

From (3.10) and (3.15) the hypothesis of Theorem 2.1 will be satisfied for a given 

Value of λ if r $ 3.14

2
1 2 1 2 1

24 4

p p

p p

  
  

 
Holds for 

P = λ1n2 3.15

This  means 

2pr2 – (1 – 2p) r + p # 0 3.16

Which has a formal solution 

2 2 2 21 2 ((1 2 ) 8 ) 1 2 ((1 2 ) 8 )

4 4

p p p p p p
r

p p

       
 

If we assume that (1 – 2p)2 – 8p2 $ 0,    3.18

Then, the maximum value of p for which this will be possible is determined from 
(1 – 2p)2 – 8p2 = 0. this will now give the value of p as 

3.19
2 1

2
P




And for this value of p, (4.1.19) gives 

3.20
2

2
r 

From (3.1) and (3.22) 

α = 2p(1 + r) <1,  .3.21

So that (3.15) is satisfied . Thus x0 (s) = 1, s є [0,1) is a satisfactory initial approximation to the solution of
(3.1) if 

3.22
2 1

0 0.29879
2 2In

 
  

For each λ in this range, Theorem 2.1 guarantees the existence of a unique solution in the ball      (1,r0).B
where 

i.e a unique solution exist in the ball        (1,0.7071…) B

Remark 4.1.1

Due to analytic complexities involved after the first iterate of (3.10) subsequent results can be obtained
by the use of methods of numerical integration. 
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