Palynological Investigation of Some Rock Units from Palaeozoic Mesozoic of the Sheiba-1 Well, Western Desert, Egypt

Sayed Abdou Mohammad Atawy
Explorations Department, Egyptian Petroleum Research Institute, Cairo, Egypt.

Abstract: Palaeozoic – Mesozoic assemblages have been isolated from cutting samples of the Sheiba no. 1 well, Western Desert, Egypt. Preserved and diversified sporomorph assemblages have been analyzed from the U. Silurian to the U. Cretaceous sediments. Over 90 species of palynomorphs have been identified; (66 species of spores and pollen grains and adding 24 species of dinoflagellate cysts). Five formations are described, from base to top; Gabbro, Pre- Khatatba, Khatatba, Masajid and Bahariya formations and fore assemblage zones are suggested. Integration of the biostratigraphy with lithological data suggests within the boundaries, two regional un-conformity surface, the first one between pre Khatatba and Khatatba formations and the second in-between Masajid and Bahariya formation. The present work demonstrate a succession of miospore assemblages zones, which have been dated stratigraphically as Silurian, Jurassic and Upper Cretaceous (Cenomanian). Zonal correlation, Palaeogeography and palaeoecology is done. The suggested palynozones in the present work are correlated with other zones in Egypt and abroad.

Key words: Cretaceous, Jurassic, Silurian, palynology, spore-pollen, assemblages, Correlation, angiosperm, gymnosperm, dinoflagellate and biostratigraphy

INTRODUCTION

Condensed analysis is done on 19 cutting samples have been chosen from the borehole Sheiba no-1, [Lat. 30° 5’ N – Long. 28° 40’ E], Western Desert, Egypt (Fig. 1). The cooperative studies permitted the assignment of reliable ages to the palynologic biozones that occur in sediments of marine origin. Establishing of these ages could be reflected the extended them into sediments of non-marine origin due to these palynological biozones. Assignment ages due to sporomorph assemblage biozones are often relatively high degree of provincialism. The palynological study have been integrated and correlated with other localities in Africa and other localities in the world.

Lithology: Silurian, Middle Jurassic and U Cretaceous succession of the study well comprises five formations. The lithologic rock units are taken from composite well log, description of the Sheiba no-1. Most of the 19 samples processed for palynological analysis yielded rich assemblages. Palynological content is rather uniform across all the section until the formational boundary (Fig. 2).

The summary descriptions of the Gabbro, Pre-Khatatba, Khatatba, Masajid and Bahariya formations are given from base to top; as follows:

Gabbro Formation: The main interval is 314 Ft in thickness and mainly composed of: gabbro with other minerals in the upper part of the formation and shale overlain by sandstones intercalated with streak of siltstones in the lower part. Sandstone is light grey, fine grained hard, siliceous, partly calcareous, with orange sand grains. Shale is grey, micaceous, with some shell fragments. Siltstone is white, light, grey moderately hard, to soft, micaceous with thin shale laminae.

Pre-Khatatba Formation: The main interval is 283 Ft in thickness and mainly composed of sandstone, siltstone and shale. The sandstone is usually hard, micaceous with trace of yellow orange and reddish sandstone. Shale is blocky to sub-blocky, dark grey and siltly with laminae of sandstone medium and hard.

Khatatba Formation: The main interval is 1339 Ft in thickness and composed of sandstone: fine, medium hard, with streaks of shale, blocky to sub blocky, medium hard siltstone, moderately brown, hard.

Masajid Formation: The main interval is 306 Ft in thickness and composed of limestone, argillaceous, jackstone to mudstone, medium hard, streaks of shale, blocky, medium hard and at the base sandstone is fine and medium hard..

Bahariya Formation: The main interval is 568 Ft in thickness and composed of sandstone. It is very fine rounded to surrounded, medium hard, with streaks of shale, medium hard to soft and streaks of siltstone and sandy limestone medium hard to hard.

Corresponding Author: Sayed Atawy, Explorations Department, Egyptian Petroleum Research Institute, Cairo, Egypt.
MATERIALS AND METHODS

More than 19 cutting samples are prepared to the study. Dilute hydrochloric acid (HCL 10%) added to the cutting samples, to remove any carbonates. After 3 hours, the residue washes three times with distilled water, then adding hydrofluoric acid (HF 49%). Washing the residue several times after 12 hours after a few minutes adding Dilute (HCL 10%) and washes, it three times with distilled water. A heavy liquid (1.8 mg. specific gravity) is prepared to separate the light palynological residue by sieving through a 15-µ nylon sieve. Two slides or sometimes more investigated depending on the enrichments of the sample (Fig. 2).
By using a transmitted light Binocular Microscope with 10X20 U to 10X40 U. magnifications connected with Digital Camera with Computer.

Biostratigraphy: The present work represent an attempt to evolve a compiling the palynological characteristics for the Silurian, Jurassic and Cretaceous rock units as detected from the study 19 samples and identify over 90 species of palynomorphs species (66 species of spores and pollen grains adding to them; 24 species of dinoflagellate cysts).

The previous palynological investigations, of the study rock units, have approved that they have an organic matters and micro floral debris. The morphologic and phylitic evolution of the microfloras as well as and their durability in sediments may represent some local and regional stratigraphic events, these definitions of the suggested palynozones in the present work and the correlation with other zones in Egypt and abroad.

The frequency distribution charts of the recovered some palynomorphs from the study well, are shown in Tables (1, 2).

Herein the study interval for the U. Silurian – U. Cretaceous (Cenomanian) rock units, can be able to identify fore palynomorphs zones. Most of these zones coincide and match with the previous workings in such interval. These study from base to top as follow:

(1) **Gabbro Formation – (Zone – I):**

Interval: The main interval is 314 ft. in thickness

Discussion: In the recent years, it has been a steadily – awareness of the usefulness of Silurian spores for regional and interregional correlation. From this formation, 4 cutting samples studied for there palynomorph contents. The upper part of this formation mainly composed of gabbro with other minerals and it is barren from miospores content.

From the study of the main important species of palynomorph assemblages shown on the slides are; *Chelinospora* sp., *Clivosispora* sp., *Convolutispora* sp., *Cymbosporites verrucosus*, *Dichadogonyaulax sellwoodii*, *Emphanisporites protophanus*, *Laevolancis divellomedia*, *Pseudodyadospora petasus*, *Quadrisporites variabilis*, *Retusotriletes maculatus*, *Retusotriletes triangularis*, *Scylasporas downiei*, *Synorisporites papillens*, *Tetrad sp.*, and *Tetrahedraletes medinensis*.

In Libya, the almost complete Palaeozoic subsurface section in western Libya, ranging in age from Cambrian to late Carboniferous, is of primary importance for the understanding of the early development of miospores of primitive land plants during Palaeozoic time and the miospore biocenosis of the late Ludlow to early Devonian is poorly documented.

Synorisporites libycus? *Lophozoontritiletes poecilomorphus*, *Synorisporites tripapillatus*, *Apiculuretusispora specula*, *Emphanisporites microrornatus* and *Streelispora newportensis*, these assemblage species have been debunked in the late Silurian and in the earliest Lower Devonian by Richardson and McGregor, partially coincide and match with working in this interval.

Age Assignment: Based on the study of samples and due to the main important index assemblages species identified; the assemblage zone –I, is of the Silurian age.

(2) **Pre - Khataatba, Khataatba and Masajed Formations - (Zone – II):**

Interval: The main interval is 1622 ft. in thickness.

Discussion:

The Pre - Khatba Formation: 283 ft. in thickness and mainly composed of sand stone, siltstone and shale. It is underlies Khatba Formation and they separated by unconformity surface. Palynomorphs are very boor and not detected in it.

The Masajid Formation: 306 ft. in thickness mainly composed of limestone. It overlies the Khatba Formation. An unconformity surface separated between the Masajed Formation and Bahariya Formation. It is very boor in palynomorphs.

The Khatatba Formation: is 1339 ft. in thickness mainly of sandstone. Five cutting samples are studied for occurrences microfloras contents. Upper limit is rich occurences of species as: *Gonyaulacysta jurassica* and *Epiplospaera reticulospinosa*. The main important palynomorphs assemblage presented; *Cicatricosisporites pseudoreticulatus*, *Concavisporites jurienensis*, *Concavisporites sp.*, *Concavissimisporites verrucosus*, *Dictyophyllumites harrisi*, *Klukisporites pseudoreticulatus* and *Syathyidites australis*. The main species are record of pollen grains such as *Araucariaeucites australis*, *Cyadopites carpentieri*, *Cycadopites sp.*, Diad pollen (*Cupressacites australis*) and *Inaperturopollenites limbatu*.

Dinoflagellate cysts are record mainly; cf. *Apteodinium* sp., *Cribroperidinium edwardsii*, *Cribroperidinium SP.*, *Ctenidodium panneum*, *Ctenidodium sp.*, *Gonyaulacysta jurassica*, *Korystocysta gochtii*, *Korystocysta pachyderma*, *Lithodinium jurassica*, *Meiourogonyulax sp.* And *Systematophora areolata*.
Table 1: Stratigraphic frequency distribution of spores and pollen grains from Sheiba-1 well, Western Desert, Egypt.

The species *Gonyaulacysta jurassica* remains an important cosmopolitan in the Oxfordian, in North Africa\[36,37\] and Western Europe. Moreover Urban, *et al.*,\[55,56,57\] proposed *Gonyaulacysta jurassica* as a marker species for the Late Jurassic of the Alamein area in the north Western Desert of Egypt. The same conclusion has been proposed by: Abou Ela & El Shamma. Habib & Drugg reported the stratigraphic importance of *Lithodonia jurassica* in the Callovian sediments of Black – Bahama Basin. This conclusion is supported by Abou Ela & El Shamma, for recognizing the Callovian. Woollam & Riding mentioned that *Korystocysta gochtii* is characterizing for Callovian. Dimeter & Smelror, in the southern Germany recorded *Gonyaulacysta jurassica*, *Ctenidodinium tenellum*, *Ctenidodinium continuum*. Thusu & Vigran, defined the Late Callovian- Early Oxfordian in the northeast Libya by the presence of *Wanaea acollaris* and *Korystocysta pachyderma*. The assemblage of *Korystocysta pachyderma*, *Sentusidinium villersense*, *Gonyaulacysta jurassica*, *Korystocysta gochtii*, *Piloidinium echinatum* and *Wanaea acollaris* define the contact between the Late Callovian and Early Oxfordian, Ibrahim, *et al.*,\[30\].
Table 2: Stratigraphic distribution of dinoflagellate cysts in Sheiba-1 well, Western Desert, Egypt.

<table>
<thead>
<tr>
<th>SILURIAN</th>
<th>JURASSIC</th>
<th>CRETACEOUS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Callovian - Oxfordian</td>
<td>CENOMANIAN</td>
<td>Sample depths in feet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Species</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 PORES AND POLLEN GAINS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DINOCYSTS</td>
</tr>
</tbody>
</table>

Age Assignment: Due to the study and previous discussion of the assemblage zone -II is of the Callovian - Oxfordian age.

(3) **Bahariya Formation:**

Interval: covers 668 ft. in thickness In Bahariya Formation two palynomorphs zones: (Zone III and Zone IV) they are from base to top:

(a) **Elaterosporites klaszi Acme Zone III:** (Early Cenomanian): **Interval:** This zone covers, 400 Ft. in thickness.

Discussion: An influx of Elaterosporites klaszi is a remarkable event indicative for this zone. The Zone III is remarked by predominant occurrence of Elaterosporites klaszi and a parallel reduction, of Afropollis jardinus. Other important associated taxa in this zone are; Perotriletes pannuconeus, Elaterocolpites castelainii and Cicatricosisporites minutistriatus.

Angiosperm pollen grains are sporadically occurring and represented by a few grains of Afropollis jardinus, Tricolpites sp. and Cretaceaeiporites scabratus. Gymnosperm pollen grains are also rare and represented mainly by Araucariacites australis, Classopolis sp. and Classopolis brasiliensis.

Dinoflagellate cysts in this assemblage zone include, Florentinia radiculata, Florentinia sp., Cleistosphaeridium sp., and Subtilisphaera perlucida. Age assignment:
Table 3: Stratigraphic of range chart spores and pollen grains from Sheiba-1 well, Western Desert, Egypt.

<table>
<thead>
<tr>
<th>STRATUM</th>
<th>SILURIAN</th>
<th>JURASSIC</th>
<th>CRETA CEUS</th>
<th>AGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Callovian - Oxfordian</td>
<td>Cenomania</td>
<td></td>
</tr>
<tr>
<td>268 ft.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) *Afropollis jardinus* Acme Zone – IV (Early Cenomanian):

Interval: This zone covers, 268 ft. in thickness.

Discussion: From this formation, the chosen and studied 13 cutting samples for their plants microfossils content two samples are barren: The Zone – IV defined by the predominance of the angiosperm pollen grains *Afropollis jardinus*. Also it is characterized by the sporadic occurrence and distinctive association of *Elateroplicites africaensis*, *Elaterocolpites castelainii*, *Elateroplicites fordsii*, *Dicerospis meridianus*, *Ctenidium*, *Elateroplicites africana*, etc.**
Table 4: Stratigraphic range chart of spores, pollen grains and dinoflagellate cysts in Sheiba-1 well, Western Desert, Egypt.

Cryblosporites pannuceous, Cicatricosisporites minutistriatus and Cyathidites / Dictyophilidites.

The pollen grains are relatively few and represented by Araucariacites australis, Ephedriptes sp., Callialasporites dampieri and Classopollis sp. The mainly characteristic taxa of angiosperm pollen grains are Afropollis jardinus and Tricolpites sp.

Dinocysts are rare in this biozone. The common occurring taxa include, Subtilisphaera sp., Florentinia radiculata, Florentinia berran and Florentinia sp.

Age Assignment: The occurrence of Afropollis jardinus provides a strong evidence for age not younger than the Early Cenomanian. This species first appeared in the Aptian and has been consistently encountered till the early Cenomanian. Florentinia berran has been recorded from the Vraconian to Lower Cenomanian of Morocco. Other author such as El-Shamma and Bassiouni, referred this biozone to early Cenomanian age.

So, from the foregoing we can conclude that the Afropollis jardinus assemblage Zone (IV) is of Early Cenomanian age.

The fluctuation in the percentage of total terrestrial components and marine dinocysts of the assemblages indicate well the fluctuation in the sea level during deposition of the Bahariya Formation.

The range chart of the recovered some palynomorphs from the study well is shown in the Tables (3, 4).

Correlation:

(A) - Zonal correlation: From the study, it can be correlated zones and lithologic section of the studied well section with two wells Bed 8-I and W. Tiba -I, in the northern Western Desert, Egypt (Fig. 3).
(B) - Palaeogeography and Palaeoecology: The palynological correlation of the individual taxa of Egypt with other area in Africa and northern South America shows that the sequence of palynological assemblages in these areas. It is relatively similar because they are all part of the same Cretaceous microfloral province or realm, namely the middle Cretaceous North Gondwana Realm, the ASA (African-south American province).

The microfloras of this province are generally characterizing by the abundance of Classopollis or Araucariacites together with a regular occurrence and great diversity of Ephedripites group. Bisaccate pollen grains are rare or absent. Pteridophyte spores are present in comparatively low diversity during the Aptian-Albian. One group of angiosperm pollen (Afropolis) and a sporomorph group of unknown botanical affinity (Elaterosporites, Elaterocolpites, Galeacornea, . . . etc.) characterize the Cenomanian time. The dominance occurrence of Afropolis jardinus "group" indicates a near shore setting. The fluctuation in the percentage of total terrestrial components and marine dinocysts of the assemblages indicate well the fluctuation in the sea level during deposition of the Bahariya Formation. This is supported by relative occurrence of both rich sporomorph and rare dinocyst components, which may indicate shallow marine environment.

Deep wells in the Western Desert have so far yield Silurian microfloras (phytoplankton and miospores)
PLATE I: (all figures X400)

1: Matonisporites simplex Deak.
3: Cyathidites australis Couper.
5, 6: Elaterosporites klaszii (Jardiné & Magloire) Jardiné.
9: Crybelosporites sp.
11: Afropolis jardinius (Brenner) Doyle.
13: Stellatopolis barghoornii Doyle et al.
16,19: Araucariacites australis Cookson.
17: Stevisispollenites sp.
20: : Ephedripites spp.
22, 23, 26: Odontochitina operculata (Wetzel) Deflander & Cookson
25: Florentinia sp.
28: Cribroperidinium sp.
30: Odonadattia sp.

2, 8: Cicatricosisporites sp.
4: Concavissimisporites punctatus (Del&Sprum) Brenner.
7: Elateroplicites sp.
10: Cretaceiporites scabratus Herngreen.
12: Murospora florida (Balme) Pocock.
14 Tricolpites sp.
15: Inaperturopollenites limbatus (Balme) Dev.
18: Spheripollenites sp.
21: Mudirongea sp.
24: Cribroperidinium orthoceras (Eisenak) Davey.

27: Lithodonia callomonii Sarjean) Gocht.
29: Cyclonephelium sp.
PLATE II: (all figures X400)

1: Concavissimisporites verrucosus (Del. & Sprum) Del., Det. & Hughes

3: Cicatricosisporites pseudoreticulatus Bolkhovittian

5: Inaperturopollenites limbatus Balme.

7: Klukisporites pseudoreticulatus Couper.

9: Diad pollen (Cupressacites axyceroides Reyre).

11: Murospora florida (Bame) Pocock.

13: Araucariaites australis Cookson

15: Korystocysta pachyderma (Deflandre) Woollam.

17: Cribroperidinium edwardsii (Cookson & Eisenack) Davey

19: Gonyaulacysta jurassica (Deflandre) Norris & Sarjeant

21: Lithodonia jurassica (Eisenack) emend. Gocht.

23: Ctenidodinium panneum (Norris) Lentin & Williams

25: Korystocysta gochtii (Sarjeant) Woollam.

2: Concavisporties sp.

4: Dictyophyllidites harrisi Couper.

6: Syathydites australis Couper.

8: Concavisporties jurienensis Balme.

10: Cycadopites carpentieri Singh.

12: Cycadopites sp.

14: Callialasportes trilobatus (Balme) Dev.

16: cf. Apteodinium sp.

18: Cribroperidinium sp.

20: Ctenidodinium sp.

22: Systematophora areolata Klement.

24: Meiourogonyulax sp.

26: Dissiliodinium sp.
known from Egypt. In addition, existence of Carboniferous assemblages has been proven[46]. Closely comparable to contemporary previously have been described from the subsurface of the Sinai Peninsula[45]. The palynomorphs groups of Egypt show minor differences in the type of flora than those reported from the equatorial regions. They may attribute to the climatic change from hot tropic at the equator to humid subtropical toward the north. The quantitative differences assemblages have affected by the differences in sedimentary processes and other environmental conditions prevailing in the sites of deposition.

Although the polyporate angiosperm forms (\textit{Cretaceaeporites}) have early appeared in the equatorial region during the Albian - Cenomanian, Tricolpate
forms at this region still represented by small primitive forms. At the same time, these forms seem to have more morphological diversity in the north area special at the Atlantic sites, as indicated by Kotova[28], and Hochuli and Kelts[29].

An environmental interpretations based on palynomorphs comprise only a small part of the field of palaeoecology and have some limitations. Among these limitations is the extinction of the parent plants producing sporomorphs and their palaeoecological relationships led at the end to unsufficient data about their ecologic conditions. The paleogeographic situation represents another important factor for stratigraphic and climatic interpretation of sporomorph assemblages. Some terrestrial palynomorphs seem to have almost world, wide distribution, such as some groups of pteridophyte spores as well as some groups of gymnosperm pollen grains. However, groups of palynomorphs are restricted to certain climatic belts and are used to define flora provinces[24]. Environmental interpretation, of the relatively abundance of the palynomorphs groups can be used in assessing distance from land. Miospores are commonly more numerous than microplankton at near-shore deposits, whereas the reverse is often true in beds that accumulated in open marine conditions. The climate type of vegetation closing the land energy of the depositional environment, and may other factories can however distorted these trends to greater or lesser extend[26].

According to these upper mentioned concepts the ecological and environmental conditions of the upper Cretaceous sediments in the study area discussed as following:

Afropollis jardinus dominates the miospore components with elater-bearing sporomorphs (mainly Elaterosporites klaszi) and small psilate tricolpate pollen and spores of the Gabonisporis group and smooth trilete spores, where as gymnosperm pollen are relatively scarce. Mainly occurrence of Elaterosporites klaszi and other Elater-bearing spores may suggest a colonization of marginal area or barrier complex during a marked regressive phase.

This may supported by less number of other marine dinoflagellate cysts. These plants prefer the moist-humid climate and their frequency in the preparation supported the above conclusion that deposition took place close to shore in the Early Cenomanian.

The ecological control on the distribution of the dinocysts has pointed out by Dale[7] who reported markedly different assemblages of living dinocysts in different sedimentary environments. In this aspect, dominance and diversity changes in the taxonomic composition of fossil dinoflagellates can relate to inshore and offshore trends, there by implying environmental control. Dominance usually bears an inverse relationship to diversity, many specimens correlating with few species and vice versa. Dinoflagellate cysts assemblages have described and illustrated from numerous areas in the world. As miospores, some species of dinoflagellates are cosmopolitan where as others have distributed restricted to certain regions.

The combination of these data provide a firm dinostratigraphic framework for correlation with the Egyptian Cretaceous assemblage and have been used in dating confirmation of the recovered assemblage zones in the present work. The sea is gradually shallower toward the Albian and interrupted with minor successive phases of regression and transgression during the early Cenomanian.

Most of the available literatures have discussed the Mesozoic dinocysts palaeogeography and confined exclusively to presence or absence of data on selected taxa and a little attention has given to the population ratio or sedimentary facies control on the assemblage. Norris[17] recorded in a review of Middle Jurassic to Early Cretaceous dinocysts distribution of recognition, three provinces; Boreal, Tethyan and Anti-Boreal (Austral). The Tethyan province however, is best developed in western north Atlantic, Southern Europe and North Africa. It has been studied by Davey & Verdier[8,9], Norris[19]; Below[5,6]; Duxbury[11]; Thusu, et al.[32,33] and Omran, et al.[41].

Conclusions: Five formations recorded and discussed from the studied section, they are from top to base as the following:

- **Bahariya Formation:** The main interval is 568 Ft in thickness
- **Masajid Formation:** The main interval is 306 Ft in thickness
- **Khatba Formation:** The main interval is 1339 Ft in thickness
- **Pre-Khatba Formation:** The main interval is 283 Ft in thickness
- **Gabbro Formation:** The main interval is 314 Ft in thickness.

About of 90 species of palynomorphs have been identified; about 66 species spores and pollen grains adding to them 24 species of dinoflagellate cysts.

Three assemblage zones are established and correlated with other localities they are:

- III- Zone (Albian - Cenomanian).
- II- Zone (Jurassic).
- I- Zone (Silurian).
Two regional unconformity surface are in-between pre-Khatatba and Khatatba formations and between Masajid and Bahariya formation.

ACKNOWLEDGMENT

The author wishes thank and gratitude to the management of (E.G.P.C.) for providing samples and logs upon which the study were carried out and thanks to Mr. Walid Ahmad for his effort helping me in samples preparation to study.

REFERENCES

