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INTRODUCTION

The volatility of financial markets has been the object of numerous developments and applications over the
past two decades, both theoretically and empirically. Portfolio managers, option traders and market makers all
are interested in the possibility of forecasting volatility, with a reasonable level of accuracy. That is so
important, in order to obtain either higher profits or less risky positions. In this respect, the most widely used
class of models is that of GARCH models (see e.g. Bollerslev, Engle, and Nelson (1994) for an overview).
Tehran Stock Exchange (TSE) opened officially in February 1967 with only six listed companies compared to
the 420 companies that individual and institutional investor trade today. The first ten years of the TSE was
marked by a brisk activity where capitalization rose from IRR 6.2 billion to IRR 240 billion and the listed
companies grew to 105. After 1978, the Islamic revolution and Irag's invasion to Iran reduced exchange
activities significantly and capitalization fell again to IRR 9.9 billion in 1982. After the Irag-Iran war ended, the
TSE was perceived as one of the most important mechanisms to foster economic development by channeling
savings into investment. This goal quickly accelerated the number of listed companies from 56 in 1988 to 422 in
2006 [www. Tse.ir]. Over the past several decades the evidence for predictability has led to variety of
approaches. The most interesting of these approaches are the “asymmetric” or “leverage” volatility models, in
which good news and bad news have different predictability for future volatility (see, for example, Black, 1976,
Nelson, 1991, Pagan and Schwert, 1990, Campbell and Hertschel, 1992, Henry, 1998, and Friedmann,
Sanddorf-Kohle, 2002). In most these studies researchers have documented strong evidence that volatility is
asymmaetric in equity markets: negative returns are generally associated with upward revisions of the conditional
volatility while positive returns are associated with smaller upward or even downward revisions of the
conditional volatility (see, for example, Cox and Ross, 1976, Engle and Ng, 1993, Henry, 1998,). Researchers
(see Black, 1976 and Schwert, 1989) believe that the asymmetry could be due to changes in leverage in response
to changes in the value of equity. Others have argued that the asymmetry could arise from the feedback from
volatility to stock price when changes in volatility induce changes in risk premiums (see Pindyck, 1984, French
et al., 1987, Campbell and Hentschel, 1992, and Wu, 2001). The presence of asymmetric volatility is most
apparent during a market crisis when large declines in stock prices are associated with a significant increase in
market volatility. Asymmetric volatility can potentially explain the negative skewness in stock return data, as
discussed in Harvey and Siddique (1999). There is no general agreement as to how the predictability should be
modeled and, in particular how to condition such models for asymmetric nature of the stock return volatility. In
this paper we have compared the performance of GARCH, TARCH, EGARCH, component ARCH (CARCH)
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and PARCH fitted to daily Tehran Stock Exchange (TSE) returns and test whether asymmetry is present. This
paper is organized as follows. In section Il of this paper various models of stock return volatility, both
symmetric and asymmetric are outlined. Section Il describes the data. Section IV presents empirical results.
The final section provides a brief summary and conclusion.

Methodology:

Let R, be the rate of return of a stock, or a portfolio of stocks from time t —1to t and Q, , be the past
Information set containing the Realized value of all relevant variables up to timet —1. So the conditional mean
and variance are Yy, = E(R1|Qt)1ht = Var(Rt|Qt) respectively. Given this definition, the unexpected return

at time t ise, = R, — Y,. In order to model the effect of &, on returns we present ARCH models. ARCH

models were Introduced by Engle (1982) and generalized as GARCH models by Bollerslev (1986). In
developing GARCH (p, q) we will have to provide mean and variance Equation

R, =Xy +¢& 1)
p q

h, :a)+2aigt2_i+2ﬁjht_j 2
i—1 =1

where @, «;, ,Bj, y are constant parameters and X, contains exogenous and predetermined
regressors. As h, is variance it must be nonnegative which impose the following
conditions: @ > 0, a4 ,....... a,20and f,....... , B, 2 0. The conditional variance under ARCH (p) model
reflects only information from time t— pto t—1 with more importance being placed on the most recent
innovation implying a; < ajfori > J. To avoid long lag lengths on &, in ARCH (p) and difficulty in

selecting the optional length p, and ensuring the non-negativity of coefficients of conditional variance equation
(2) , Bollerslev (1986) present GARCH(P, g). A common parameterization for the GARCH model that has been
adopted in most applied studies is the GARCH (1, 1) specification under which the effect of a shock to volatility
declines geometrically over time. One problem with ARCH (p) and GARCH (p, q) is that good news and bad

news with some absolute size have the same effect on h,. This fact is symmetric effect. However, the market

may react differently to good and bad news. It is important, to be able to test for and allow asymmetry in the
ARCH type specification. Nelson (1991) proposes the exponential GARCH (EGARCH) model as a way to deal

whit this problem. Under the EGARCH (1, 1) the h, is given as:

&, &
log(h,) = w+a| |-22-|- |2/ |+ Blogh,_, +y - 3)
1 Jhey 7 RN

The EGARCH news Impact differs from the GARCH new Impact in four ways: (1) it is not symmetric. (2)
Big news can have a much greater impact than in the GARCH model. (3) Log construction of Equation 3

ensures that the estimated h, is strictly positive, thus non-negativity constraints used in the estimation of the
ARCH and GARCH are not necessary. (4) Since the parameter of y typically enters equation 3 with a negative

sign, bad news generates more volatility than good news. The Component GARCH (CGARCH) model by Engle
and Lee (1993) decomposes returns uncertainty into a short-run and a long-run component by permitting

transitory deviations of the conditional volatility around a time-varying trend, g, , modeled as:
2 2 2
o =0, =ale; —dy) + B(o; —diy) (4)
2 2
A =o+p(0,—o)+d(e, —or,) (5)
Here O't2 is still the volatility, while g, takes the place of « and is the time varying long run volatility.

The first equation describes the transitory component, O't2 — (0, which converges to zero with powers of
(0{+,B). The second equation describes the long run component qt, which converges to @ with powers

of p. Typically o is between 0.99 and 1 so that 0, approaches @ very slowly. We can combine the
transitory and permanent equations and write
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ol =(l-a- P~ p)o+(a+p)el, —(ap +(a+ el + B~ 9ol — (fo —(a+ Pp)ol, (6)

which shows that the component model is a (nonlinear) restricted GARCH (2, 2) model. In addition,
GARCH(1, 1) is a special case of the CARCH in which & = ﬂ = 0. We can include exogenous variables in
the conditional variance equation of component models, either in the permanent or transitory equation (or both).
The variables in the transitory equation will have an impact on the short run movements in volatility, while the
variables in the permanent equation will affect the long run levels of volatility. The asymmetric component
combines the component model with the asymmetric TARCH model. This specification introduces asymmetric
effects in the transitory equation and estimates models of the form:

R, = X7 +&, )
d. Za)+p(qt—1_a))+¢(gt2—1_o_t2—1 )+ 6O,z N (8)
Gtz =0,y =af 5t2-1 =Gy )+ 2( 512-1 — 0y )diy + A( Gtz—l — 0y )+ B( O-tz—l —Gy )+ 0,2y 11

Where Z are the exogenous variables and d is the dummy variable indicating negative shocks. 7 >0
indicates the presence of transitory leverage effects in the conditional variance. Suppose information is held
constant at time t —2 and before, Engle and Ng (1993) describe the relationship between &, and h, asthe
news impact curve. The news impact curves of GARCH and CGARCH models are symmetric and centered
atg, , = 0. The news impact curves of EGARCH and TARCH are asymmetric with different slopes.

To estimate the model, we follow the quasi-maximum likelihood. Both the conditional mean and the
conditional variance are estimated jointly by maximizing the log-likelihood function which is computed as the
logarithm of the product of the conditional densities of the prediction errors. The ML estimates are obtained by
maximizing the log-likelihood with the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton
optimization algorithm in the MATLAB numerical optimization routines.

Forecast evaluation is a key step in any forecasting exercise. A popular metric to evaluate different forecast
models is given by the minimization of a particular statistical loss function. However, the evaluation of the
quality of competing volatility models can be very difficult because, as remarked by both Bollerslev, Engle and
Nelson (1994) and Lopez (2001), there does not exist a unique criterion capable of selecting the best model.
Thus, even though rather criticizable, so far most of the literature has focused on a particular statistical loss
function, the Mean Squared Error (MSE). In this paper we have used MSE criterion for evaluation of competing
volatility modﬂels. This loss function is:

MSE = ﬂ_lz{ﬁr:n - Er+1lr}‘ (24)
=1
where 62, is the actual volatility that we have used the squared return for the measure of daily volatility
and k.., is the forecasted volatility based on period of forecasting.

Data:
The sample is 2567 observations (from 9/29/1997 to 11/27/2008) are used as the in-sample for estimation

purposes. The return is calculated as I, = 100 [IOQ(&)] where P, is the value of index at time t. Table 1
t-1

shows some descriptive statistics of the TSM rate of return. The mean is quite small and the standard deviation

is around 0.3 .The kurtosis is significantly higher than the normal value of 3 indicating that fat-tailed distribution

are necessary to correctly describe conditional distribution of +;. the skewness is significant, small and negative,

showing that the lower tail of empirical distribution of the return is longer than the upper tail, that is negative

returns are more likely to be far below the mean than their counterparts.

Table 1: Descriptive Statistics I

Standard . 2
Mean Deviation Min Max Sk Ku B-J Q°(12) LM(12)
0.0248 0.2910 -5.45 4.83 -0.68 71.75 654376.1 182.89 77.05
p-value: [0.000] [0.000] [0.00]

Note: Sk and Ku are skewness and excess kurtosis. B-J is the Bera-Jarque test for normality distributed
as y2(2). The Q2(12)statistic is the Ljung-Box test on the squared residuals of the conditional mean

regression up to the twelfth order. for serial correlation in the squared return data, distributed as 5?2 (12).
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LM(12) statistic is the ARCH LM test up to twelfth lag and under the null hypothesis of no ARCH effects it has
a y?(q) distribution, where q is the number of lags. LM (12) is the Lagrange Multiplier test for ARCH effects

in the OLS residuals from the regression of the returns on a constant, while @*(12) is the corresponding Ljung-
Box statistic on the squared standardized residuals. Both these statistic are highly significant suggestion the
presence of ARCH effects in the TSM returns up to the twelfth order.

Results:

The parameter estimates for the different state GARCH(1,1) models with normal, t-student and GED
distributions are presented respectively in Tables 2, 3 and 4. The first 2567 observations (from 9/29/1997 to
11/27/2008) are used as the in-sample for estimation purposes. Regarding the conditional mean, all the
parameters for the various GARCH models are significant. The conditional variance estimates show that almost
all the parameters are highly significant. Hence GARCH models perform quite well at least in sample.

Table 2: Maximum Likelihood Estimates of standard GARCH Models with Normal conditional distribution.

GARCH TARCH EGARCH CGARCH PARCH
& 0.0218 0.0217 0.0284 0.0208 0.0217
p-value 0.0 0.0 0.0 0.0 0.0
(1) 0.0005 0.0005 -0.213 1.14 0.0005
p-value 0.0 0.0 0.0 0.0 0.0
o 0.1403 0.139 0.246 0.228 0.1402
p-value 0.0 0.0 0.0 0.0 0.0
ﬂ 0.878 0.878 0.983 0.765 0.878
p-value 0.0 0.0 0.0 0.0 0.0
Y - 0.0001 -0.0194 - 0.0018
p-value - 0.82 0.0 - 0.87
- - - 0.999 2.004
p-value - - - 0.0 0.0
o - - - -0.026 -
p-value - - - 0.0 -
v - - B R R
p-value - - - - -
Log likelihood -642.1511 -642.1569 -620.1886 -744.0507 -642.1572
Table 3: Maximum Likelihood Estimates of standard GARCH Models with t-student conditional distribution.
GARCH TARCH EGARCH CGARCH PARCH
& 0.0141 0.0122 0.0121 0.0126 0.0128
p-value 0.0 0.0 0.0 0.0 0.0
@ 0.0006 0.0002 -0.158 1.061 0.0026
p-value 0.0 0.0 0.0 0.74 0.02
a 0.652 0.464 0.216 0.438 0.166
p-value 0.0 0.0 0.0 0.0 0.0
,6' 0.650 0.768 0.995 0.118 0.882
p-value 0.0 0.0 0.0 0.0 0.0
Y - -0.149 0.029 - -0.058
p-value - 0.0 0.0 - 0.08
1% - - - 0.999 0.624
p-value - - - 0.0 0.0
o - - - 0.077 -
p-value - - - 0.0 -
v 3.03 3.09 3.13 4.28 3.015
p-value 0.0 0.0 0.0 0.0 0.0
Log likelihood -1183.607 -1190.149 -1239.579 -1256.147 -1265.459

Table 4: Maximum Likelihood Estimates of standard GARCH Models with GED conditional distribution.

GARCH TARCH EGARCH CGARCH PARCH
& 0.0146 0.0127 0.0149 0.0134 0.0246
p-value 0.0 0.0 0.0 0.0 0.0
@ 0.0002 0.0002 -0.212 0.381 0.0048
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p-value 0.0 0.0 0.0 0.0 0.0

a 0.177 0.1966 0.240 0.428 0.1597
p-value 0.0 0.0 0.0 0.0 0.0

IB 0.855 0.863 0.986 0.256 0.875
p-value 0.0 0.0 0.05 0.0 0.0

Y -0.061 0.0148 - -0.030
p-value 0.0 0.05 - 0.38
% 0.999 0.731
p-value 0.0 0.0

o 0.0309 -
p-value - - - 0.0 -

v 0.93 0.927 0.923 1.007 0.908
p-value 0.0 0.0 0.0 0.0 0.0
Log likelihood -1118.336 -1124.019 -1150.061 -1172.739 -1160.197

Based on the “asymmetric” or “leverage” volatility models, in which good news and bad news have
different predictability for future volatility. In most these studies researchers have documented strong evidence
that volatility is asymmetric in equity markets: negative returns are generally associated with upward revisions
of the conditional volatility while positive returns are associated with smaller upward or even downward
revisions of the conditional volatility. In this paper, results indicate that leverage effect exists in asymmetric
models with normal distribution, but this effect does not exist in asymmetric models with t-student and GED
distributions. Since the main focus is on the predictive ability, we only present MSE criteria in Table 6, without
doing any formal test.

Table 6: In sample goodness-of-fit statistics.

Model N. of Par. MSE Rank
GARCH-N 4 0.006405 1
GARCH-t 5 0.007291 2
GARCH-GED 5 0.013143 10
EGARCH-N 5 0.007356 3
EGARCH-t 6 0.013872 12
EGARCH-GED 6 0.0081714 4
TARCH-N 5 0.010972 6
TARCH-t 6 0.03678 15
TARCH-GED 6 0.01493 13
CGARCH-N 6 0.010638 5
CGARCH-t 7 0.013746 11
CGARCH-GED 7 0.012271 9
PARCH-N 6 0.010983 7
PARCH-t 7 0.02254 14
PARCH-GED 7 0.011607 8

The best model based on MSE criteria is GARCH with normal distribution, second model is GARCH with t
distribution and third model is EGARCH (1,1) with normal distribution.

Conclusion:

In this paper we have compared a set of standard GARCH models in terms of their ability to forecast
Tehran stock market volatility. The standard GARCH models considered are the GARCH(1,1), EGARCH(1,1),
TARCH(1,1), PARCH(1,1) and CGARCH(1,1). In addition, all models are estimated assuming both Gaussian
innovations and fat-tailed distributions, such as the Student’s t and the GED. Results indicate that leverage
effect exists in asymmetric models with normal distribution, but this effect does not exist in asymmetric models
with t-student and GED distributions. The main goal is to evaluate performance of different GARCH models in
terms of their ability to characterize and predict out-of-sample the volatility of TSE. | have used the squared
return for the measure of real volatility. The forecasting performances of each model are measured using MSE.
Overall, the empirical results show that The best model based on MSE criteria is GARCH with normal
distribution, second model is GARCH with t distribution and third model is EGARCH (1,1) with normal
distribution
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