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 Background: The volatility of financial markets has been the object of numerous 

developments and applications over the past two decades, both theoretically and 

empirically.  Portfolio managers, option traders and market makers all are interested in 
the possibility of forecasting volatility, with a reasonable level of accuracy. That is so 

important, in order to obtain either higher profits or less risky positions. Objective: we 

have compared different GARCH models with both Gaussian and fat-tailed conditional 
distribution for residuals in terms of their ability to describe and forecast volatility. 

Results: The best model based on MSE criteria is GARCH with normal distribution, 

second model is GARCH with t distribution and third model is EGARCH (1,1) with 
normal distribution. Conclusion: Results indicate that leverage effect exists in 

asymmetric models with normal distribution, but this effect does not exist in 

asymmetric models with t-student and GED distributions. 
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INTRODUCTION 

 

The volatility of financial markets has been the object of numerous developments and applications over the 

past two decades, both theoretically and empirically. Portfolio managers, option traders and market makers all 

are interested in the possibility of forecasting volatility, with a reasonable level of accuracy. That is so 

important, in order to obtain either higher profits or less risky positions. In this respect, the most widely used 

class of models is that of GARCH models (see e.g. Bollerslev, Engle, and Nelson (1994) for an overview).  

Tehran Stock Exchange (TSE) opened officially in February 1967 with only six listed companies compared to 

the 420 companies that individual and institutional investor trade today. The first ten years of the TSE was 

marked by a brisk activity where capitalization rose from IRR 6.2 billion to IRR 240 billion and the listed 

companies grew to 105. After 1978, the Islamic revolution and Iraq's invasion to Iran reduced exchange 

activities significantly and capitalization fell again to IRR 9.9 billion in 1982. After the Iraq-Iran war ended, the 

TSE was perceived as one of the most important mechanisms to foster economic development by channeling 

savings into investment. This goal quickly accelerated the number of listed companies from 56 in 1988 to 422 in 

2006 [www. Tse.ir]. Over the past several decades the evidence for predictability has led to variety of 

approaches. The most interesting of these approaches are the “asymmetric” or “leverage” volatility models, in 

which good news and bad news have different predictability for future volatility (see, for example, Black, 1976, 

Nelson, 1991, Pagan and Schwert, 1990, Campbell and Hertschel, 1992, Henry, 1998, and Friedmann, 

Sanddorf-Köhle, 2002). In most these studies researchers have documented strong evidence that volatility is 

asymmetric in equity markets: negative returns are generally associated with upward revisions of the conditional 

volatility while positive returns are associated with smaller upward or even downward revisions of the 

conditional volatility (see, for example, Cox and Ross, 1976, Engle and Ng, 1993, Henry, 1998,). Researchers 

(see Black, 1976 and Schwert, 1989) believe that the asymmetry could be due to changes in leverage in response 

to changes in the value of equity. Others have argued that the asymmetry could arise from the feedback from 

volatility to stock price when changes in volatility induce changes in risk premiums (see Pindyck, 1984, French 

et al., 1987, Campbell and Hentschel, 1992, and Wu, 2001). The presence of asymmetric volatility is most 

apparent during a market crisis when large declines in stock prices are associated with a significant increase in 

market volatility. Asymmetric volatility can potentially explain the negative skewness in stock return data, as 

discussed in Harvey and Siddique (1999). There is no general agreement as to how the predictability should be 

modeled and, in particular how to condition such models for asymmetric nature of the stock return volatility. In 

this paper we have compared the performance of GARCH, TARCH, EGARCH, component ARCH (CARCH) 
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and PARCH fitted to daily Tehran Stock Exchange (TSE) returns and test whether asymmetry is present. This 

paper is organized as follows. In section II of this paper various models of stock return volatility, both 

symmetric and asymmetric are outlined. Section III describes the data. Section IV presents empirical results. 

The final section provides a brief summary and conclusion. 

 

Methodology: 

Let tR  be the rate of return of a stock, or a portfolio of stocks from time 1t  to t  and 1 t  be the past 

Information set containing the Realized value of all relevant variables up to time 1t . So the conditional mean 

and variance are )var(),( tttttt RhREy   respectively. Given this definition, the unexpected return 

at time t  is ttt yR  . In order to model the effect of t  on returns we present ARCH models. ARCH 

models were Introduced by Engle (1982) and generalized as GARCH models by Bollerslev (1986). In 

developing GARCH (p, q) we will have to provide mean and variance Equation 

 

ttt xR                                                                                                          (1) 
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where  ,,, ji  are constant parameters and tx  contains exogenous and predetermined 

regressors. As th  is variance it must be nonnegative which impose the following 

conditions: 0 , 0,.......1 p  and 0,,.........1 q . The conditional variance under ARCH (p) model 

reflects only information from time pt  to 1t  with more importance being placed on the most recent 

innovation implying ji aa  for ji  . To avoid long lag lengths on t  in ARCH (p) and difficulty in 

selecting the optional length p, and ensuring the non-negativity of coefficients of conditional variance equation 

(2) , Bollerslev (1986) present GARCH(P, q). A common parameterization for the GARCH model that has been 

adopted in most applied studies is the GARCH (1, 1) specification under which the effect of a shock to volatility 

declines geometrically over time. One problem with ARCH (p) and GARCH (p, q) is that good news and bad 

news with some absolute size have the same effect on th .  This fact is symmetric effect. However, the market 

may react differently to good and bad news. It is important, to be able to test for and allow asymmetry in the 

ARCH type specification. Nelson (1991) proposes the exponential GARCH (EGARCH) model as a way to deal 

whit this problem. Under the EGARCH (1, 1) the th  is given as:  

1

1
1

1

1
1 log2)log(








 















t

t
t

t

t

h
h

h
h







                                                (3) 

The EGARCH news Impact differs from the GARCH new Impact in four ways: (1) it is not symmetric. (2) 

Big news can have a much greater impact than in the GARCH model. (3) Log construction of Equation 3 

ensures that the estimated th  is strictly positive, thus non-negativity constraints used in the estimation of the 

ARCH and GARCH are not necessary. (4) Since the parameter of   typically enters equation 3 with a negative 

sign, bad news generates more volatility than good news. The Component GARCH (CGARCH) model by Engle 

and Lee (1993) decomposes returns uncertainty into a short-run and a long-run component by permitting 

transitory deviations of the conditional volatility around a time-varying trend, tq , modeled as:  
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Here 
2

t  is still the volatility, while tq  takes the place of   and is the time varying long run volatility. 

The first equation describes the transitory component, tt q2  which converges to zero with powers of 

(   ). The second equation describes the long run component tq , which converges to   with powers 

of  . Typically   is between 0.99 and 1 so that tq  approaches   very slowly. We can combine the 

transitory and permanent equations and write  



568                                                                          Younes Nademi et al, 2014 

Journal of Applied Science and Agriculture, 9(2) February 2014, Pages: 566-571 

 
2

2

2

1

2

1

2

1

2 ))(()))(()()1)(1(   ttttt      (6)                                                                                 

which shows that the component model is a (nonlinear) restricted GARCH (2, 2) model.  In addition, 

GARCH(1, 1) is a special case of the CARCH in which 0  . We can include exogenous variables in 

the conditional variance equation of component models, either in the permanent or transitory equation (or both). 

The variables in the transitory equation will have an impact on the short run movements in volatility, while the 

variables in the permanent equation will affect the long run levels of volatility. The asymmetric component 

combines the component model with the asymmetric TARCH model. This specification introduces asymmetric 

effects in the transitory equation and estimates models of the form: 

ttt xR                                                                                                                                                                                  (7)  
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Where z  are the exogenous variables and d is the dummy variable indicating negative shocks. 0  

indicates the presence of transitory leverage effects in the conditional variance. Suppose information is held 

constant at time 2t  and before, Engle and Ng (1993) describe the relationship between 1t  and th  as the 

news impact curve. The news impact curves of GARCH and CGARCH models are symmetric and centered 

at 01 t . The news impact curves of EGARCH and TARCH are asymmetric with different slopes. 

To estimate the model, we follow the quasi-maximum likelihood.  Both the conditional mean and the 

conditional variance are estimated jointly by maximizing the log-likelihood function which is computed as the 

logarithm of the product of the conditional densities of the prediction errors.  The ML estimates are obtained by 

maximizing the log-likelihood with the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton 

optimization algorithm in the MATLAB numerical optimization routines. 

Forecast evaluation is a key step in any forecasting exercise. A popular metric to evaluate different forecast 

models is given by the minimization of a particular statistical loss function. However, the evaluation of the 

quality of competing volatility models can be very difficult because, as remarked by both Bollerslev, Engle and 

Nelson (1994) and Lopez (2001), there does not exist a unique criterion capable of selecting the best model.  

Thus, even though rather criticizable, so far most of the literature has focused on a particular statistical loss 

function, the Mean Squared Error (MSE). In this paper we have used MSE criterion for evaluation of competing 

volatility models.  This loss function is: 

 
where  is the actual volatility that we have used the squared return for the measure of daily volatility 

and  is the forecasted volatility based on period of forecasting.  

 

Data:  

The sample is 2567 observations (from 9/29/1997 to 11/27/2008) are used as the in-sample for estimation 

purposes.  The return is calculated as )][log(100
1


t

t
t

p

p
r  where tP  is the value of index at time t. Table 1 

shows some descriptive statistics of the TSM rate of return.  The mean is quite small and the standard deviation 

is around 0.3 .The kurtosis is significantly higher than the normal value of 3 indicating that fat-tailed distribution 

are necessary to correctly describe conditional distribution of   the skewness is significant, small and negative, 

showing that the lower tail of empirical distribution of the return is longer than the upper tail, that is negative 

returns are more likely to be far below the mean than their counterparts. 
  

 

Table 1: Descriptive Statistics tr  

Mean
 Standard 

Deviation 
Min Max Sk  Ku  JB   )12(2Q  LM(12) 

0.0248 0.2910 -5.45 4.83 -0.68 71.75 654376.1 182.89 77.05 

p-value:      [0.000] [0.000] [0.00] 

Note: Sk and Ku are skewness and excess kurtosis. B-J is the Bera-Jarque test for normality distributed 

as ).2(2 The )12(2Q statistic is the Ljung-Box test on the squared residuals of the conditional mean 

regression up to the twelfth order. for serial correlation in the squared return data, distributed as ).12(2  

tttttttttttt zqqdqqq 221

2

11

2

111

2

11

2

11

2 )()()()(   



569                                                                          Younes Nademi et al, 2014 

Journal of Applied Science and Agriculture, 9(2) February 2014, Pages: 566-571 

 
LM(12) statistic is the ARCH LM test up to twelfth lag and under the null hypothesis of no ARCH effects it has 

a )(2 q  distribution, where q is the number of lags. LM (12) is the Lagrange Multiplier test for ARCH effects 

in the OLS residuals from the regression of the returns on a constant, while  is the corresponding Ljung-

Box statistic on the squared standardized residuals.  Both these statistic are highly significant suggestion the 

presence of ARCH effects in the TSM returns up to the twelfth order. 
    

      

 

Results: 

The parameter estimates for the different state GARCH(1,1) models with normal, t-student and GED 

distributions are presented respectively  in Tables 2, 3 and 4.  The first 2567 observations (from 9/29/1997 to 

11/27/2008) are used as the in-sample for estimation purposes. Regarding the conditional mean, all the 

parameters for the various GARCH models are significant.  The conditional variance estimates show that almost 

all the parameters are highly significant. Hence GARCH models perform quite well at least in sample. 

 
Table 2: Maximum Likelihood Estimates of standard GARCH Models with Normal conditional distribution. 

 GARCH TARCH EGARCH CGARCH PARCH 

 
0.0218 0.0217 0.0284 0.0208 0.0217 

p-value 0.0 0.0 0.0 0.0 0.0 

  0.0005 0.0005 -0.213 1.14 0.0005 

p-value 0.0 0.0 0.0 0.0 0.0 

  0.1403 0.139 0.246 0.228 0.1402 

p-value 0.0 0.0 0.0 0.0 0.0 

  0.878 0.878 0.983 0.765 0.878 

p-value 0.0 0.0 0.0 0.0 0.0 

  - 0.0001 -0.0194 - 0.0018 

p-value - 0.82 0.0 - 0.87 

  - - - 0.999 2.004 

p-value - - - 0.0 0.0 

  - - - -0.026 - 

p-value - - - 0.0 - 

 - - - - - 

p-value - - - - - 

Log likelihood -642.1511 -642.1569 -620.1886 -744.0507 -642.1572 

 

Table 3: Maximum Likelihood Estimates of standard GARCH Models with t-student conditional distribution. 

 GARCH TARCH EGARCH CGARCH PARCH 

 
0.0141 0.0122 0.0121 0.0126 0.0128 

p-value 0.0 0.0 0.0 0.0 0.0 

  0.0006 0.0002 -0.158 1.061 0.0026 

p-value 0.0 0.0 0.0 0.74 0.02 

  0.652 0.464 0.216 0.438 0.166 

p-value 0.0 0.0 0.0 0.0 0.0 

  0.650 0.768 0.995 0.118 0.882 

p-value 0.0 0.0 0.0 0.0 0.0 

  - -0.149 0.029 - -0.058 

p-value - 0.0 0.0 - 0.08 

  - - - 0.999 0.624 

p-value - - - 0.0 0.0 

  - - - 0.077 - 

p-value - - - 0.0 - 

 3.03 3.09 3.13 4.28 3.015 

p-value 0.0 0.0 0.0 0.0 0.0 

Log likelihood -1183.607 -1190.149 -1239.579 -1256.147 -1265.459 

 

 

 

 

 

 

 

Table 4: Maximum Likelihood Estimates of standard GARCH Models with GED conditional distribution. 

 GARCH TARCH EGARCH CGARCH PARCH 

 
0.0146 0.0127 0.0149 0.0134 0.0246 

p-value 0.0 0.0 0.0 0.0 0.0 

  0.0002 0.0002 -0.212 0.381 0.0048 
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p-value 0.0 0.0 0.0 0.0 0.0 

  0.177 0.1966 0.240 0.428 0.1597 

p-value 0.0 0.0 0.0 0.0 0.0 

  0.855 0.863 0.986 0.256 0.875 

p-value 0.0 0.0 0.05 0.0 0.0 

  - -0.061 0.0148 - -0.030 

p-value - 0.0 0.05 - 0.38 

  - - - 0.999 0.731 

p-value - - - 0.0 0.0 

  - - - 0.0309 - 

p-value - - - 0.0 - 

 0.93 0.927 0.923 1.007 0.908 

p-value 0.0 0.0 0.0 0.0 0.0 

Log likelihood -1118.336 -1124.019 -1150.061 -1172.739 -1160.197 

 

Based on the “asymmetric” or “leverage” volatility models, in which good news and bad news have 

different predictability for future volatility. In most these studies researchers have documented strong evidence 

that volatility is asymmetric in equity markets: negative returns are generally associated with upward revisions 

of the conditional volatility while positive returns are associated with smaller upward or even downward 

revisions of the conditional volatility.  In this paper, results indicate that leverage effect exists in asymmetric 

models with normal distribution, but this effect does not exist in asymmetric models with t-student and GED 

distributions. Since the main focus is on the predictive ability, we only present MSE criteria in Table 6, without 

doing any formal test. 

 
Table 6: In sample goodness-of-fit statistics. 

Model N. of Par. MSE Rank 

GARCH-N 4 0.006405 1 

GARCH-t 5 0.007291 2 

GARCH-GED 5 0.013143 10 

EGARCH-N 5 0.007356 3 

EGARCH-t 6 0.013872 12 

EGARCH-GED 6 0.0081714 4 

TARCH-N 5 0.010972 6 

TARCH-t 6 0.03678 15 

TARCH-GED 6 0.01493 13 

CGARCH-N 6 0.010638 5 

CGARCH-t 7 0.013746 11 

CGARCH-GED 7 0.012271 9 

PARCH-N 6 0.010983 7 

PARCH-t 7 0.02254 14 

PARCH-GED 7 0.011607 8 

The best model based on MSE criteria is GARCH with normal distribution, second model is GARCH with t 

distribution and third model is EGARCH (1,1) with normal distribution. 

 

Conclusion: 

In this paper we have compared a set of standard GARCH models in terms of their ability to forecast 

Tehran stock market volatility. The standard GARCH models considered are the GARCH(1,1), EGARCH(1,1), 

TARCH(1,1), PARCH(1,1) and CGARCH(1,1). In addition, all models are estimated assuming both Gaussian 

innovations and fat-tailed distributions, such as the Student’s t and the GED. Results indicate that leverage 

effect exists in asymmetric models with normal distribution, but this effect does not exist in asymmetric models 

with t-student and GED distributions. The main goal is to evaluate performance of different GARCH models in 

terms of their ability to characterize and predict out-of-sample the volatility of TSE. I have used the squared 

return for the measure of real volatility. The forecasting performances of each model are measured using MSE.  

Overall, the empirical results show that The best model based on MSE criteria is GARCH with normal 

distribution, second model is GARCH with t distribution and third model is EGARCH (1,1) with normal 

distribution  
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