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INTRODUCTION

The flow over a stretching surface is an important problem in many engineering processes with applications
in industries such as extrusion, melt-spinning, the hot rolling, wire drawing, glass-fiber production, manufacture
of plastic and rubber sheets, cooling of a large metallic plate in a bath, which may be an electrolyte, etc. In
industry, polymer sheets and filaments are manufactured by continuous extrusion of the polymer from a die to a
windup roller, which is located at a finite distance away. The thin polymer sheet constitutes a continuously
moving surface with a non-uniform velocity through an ambient fluid (Khan, W.A., 1. Pop, 2010). Crane (1970)
studied the steady two-dimensional incompressible boundary layer flow of a Newtonian fluid caused by the
stretching of an elastic flat sheet which moves in its own plane with a velocity varying linearly with the distance
from a fixed point due to the application of a uniform stress. This problem is particularly interesting since an
exact solution of the two-dimensional Navier—Stokes equations has been obtained by Crane (1970). Elbashbeshy
and Bazid (2004) considered flow and heat transfer in a porous medium over a stretching surface with internal
heat generation and suction or injection. The boundary layer equations were converted into a set of ordinary
differential equations and solved numerically for the flow and heat transfer characteristics. Layek (2007) has
reported heat and mass transfer boundary layer stagnation-point flow of an incompressible viscous fluid towards
a heated porous stretching sheet embedded in a porous medium subject to suction/blowing with internal heat
generation or absorption. The governing boundary layer equations were transformed by scaling group of
transformation into a system of ordinary differential equations. Kuznetsov and Nield (2010) to study the natural
convective flow of a nanofluid over a vertical plate. Their similarity analysis identified four parameters
governing the transport process, namely a Lewis number Le, a buoyancy-ratio number Nr, a Brownian motion
number Nb, and a thermophoresis number Nt. The same authors later extended the work to a nanofluid saturated
porous medium (Nield, D.A., A.V. Kuznetsov, 2009). Hamad (Hamad, M.A.A., 2011) obtained the analytical
solutions for convective flow and heat transfer of an viscous incompressible nanofluid past a semi-infinite
vertical stretching sheet in the presence of magnetic field. Hayat et al., (2010) investigated the two-dimensional
mixed convection boundary layer magnetohydrodynamic (MHD) stagnation-point flow through a porous
medium bounded by a stretching vertical plate with thermal radiation. They considered that the stretching
velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point.
Cortell (2007) examined flow and heat transfer on a nonlinear stretching sheet for two different types of thermal
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boundary conditions on the sheet, constant surface temperature (CST case) and prescribed surface temperature
(PST case). Sultana, Saha and Rahman (10) have analyzed the effects of internal heat generation, radiation and
suction or injection on the heat transfer in a porous medium over a stretching surface. Ali (1994) studied flow
and heat transfer characteristics on a stretched surface subject to a power-law velocity and temperature
distributions for three different boundary conditions. Kelson and Farrell (2001) studied self-similar boundary
layer flow a micropolar fluid driven by a porous stretching sheet and obtained analytical results for the shear
stress and the microrotation at the surface for the limiting cases of large suction or injection. Rajeswari, Jothiram
and Nelson (2009) have studied the effect of chemical reaction, heat and mass transfer on nonlinear MHD
boundary layer flow through vertical porous surface with heat source in the presence of suction.

The objective of the present study is to analyze the development of the steady boundary layer flow, heat
transfer and nanoparticle fraction over a permeable nonlinearly stretching surface in a nanofluid. A similarity
solution is presented. This solution depends on a Prandtl number Pr, a Lewis number Le, a Brownian mation
number Nb, a thermophoresis number Nt, Heat source/sink parameter A, Permeability parameter k;, Nonlinearly
parameter n and Suction/injection parameter S. The dependency of the local Nusselt and local Sherwood
numbers on these parameters is numerically investigated.

Basic equation:

Consider steady, incompressible, laminar, two-dimensional boundary layer flow of a nanofluid past a flat
sheet coinciding with the plane y = 0 and the flow being confined to y > 0. The flow is generated, due to non-
linear stretching of the sheet, caused by the simultaneous application of two equal and opposite forces along the
x-axis. Keeping the origin fixed, the sheet is then stretched with a velocity u,, = bx" where b is a constant, n is a
nonlinear stretching parameter and x is the coordinate measured along the stretching surface, varying
nonlinearly with the distance from the slit. The pressure gradient and external forces are neglected. The
stretching surface is maintained at constant temperature and concentration, T,, and C,,, respectively, and these
values are assumed to be greater than the ambient temperature and concentration, T, and C,,, respectively.

The basic steady conservation of mass, momentum, thermal energy and nanoparticles equations for
nanofluids can be written in Cartesian coordinates x and y as, see Khan and Pop (2010),

E‘j dv

o= "oy O &
du Bu __  1ép & 8t u
uﬂx—l_ijﬂ}'_ p‘fﬂx—l_u(ﬂx:_'_ﬂy:) (2)
_ 1&g v | 8w
+ B} B prdy + U(E‘x: + E'y:) 3)
LI Y i 4 scar , sty , (or\[rery? . (er)’
Ei:r tv dy @ (sz + } tr {DB (ﬂx dx dy ﬂ_‘;) + (Tx_) [(Bx} + (E‘_}'} :|} (4)
ac 8c a*c a‘_r a'r
ug+ﬂﬂ_y_ﬂﬂ(ﬂx:+ﬂ}':) ( )|: +|‘3} ] ®)
Subject to the boundary condition
u=uy(x)=bx", v = w,, T=T,, C=C,, at y=0
u—u=ax, T-T,, C—C, as y—w (6)

Here u and 17 are the velocity components along the axes x and y, respectively, p is the fluid pressure, Py is

the density of the base fluid, o is the thermal diffusivity, v is the kinematic viscosity, a,b is a positive constant,
Dg is the Brownian diffusion coefficient, D+ is the thermophoretic diffusion coefficient and

T = (pc),/(pc) is the ratio between the effective heat capacity of the nanoparticle material and heat
capacity of the fluid with g being the density, c is the volumetric volume expansion coefficient and 2y is the

density of the particles.
We look for a similarity solution of Egs. (1)—(5) with the boundary conditions (6) of the following form:
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dy ' v dx
-0, T-T,
O(n) = —"= g(n) == 7
() =—. 8 =— (7

In seeking of the similarity solution (7), we have taken into account that the pressure in the outer (inviscid)
flow is p = po (constant). On substituting (7) into Egs. (2)—(5), we obtain the following ordinary differential
equations:

Pt =GRt G ) =0 ®

;TH“ +fO' 4+ A0+ NbO'O®' + N8> =0 ©)
" 1 ' Nt rr

@ +ELef@ +E@ =0 (10)

Subject to the boundary condition
f(O)=5f(0)=1,8(0)=1,06(0)=1
f'(e0) =~,8(c0) = 0,0(0) = 0 (11)

where Pr = v/a is the Prandtl number, A = @, /(pbc, ) is the heat source (A > 0) or sink (A < 0)

parameter, k, = v/(bk) is the permeability parameter of the porous medium, § = —vwfw.,’ﬁ (S>0
corresponds to suction and S < O corresponds to blowing), Le = v/D; is the Lewis number,
Nb=1Dg(C, — C.)/v is Brownian motion parameter and Nt =tDg(C, —C,)/v is the
thermophoresis parameter (see Khan and Pop [1]). For the linearly stretching boundary problem (i.e., n = 1) the
exact solution for fisf (1) = 1 — e ™", first obtained by Crane (1970) and this exact solution is unique, while

for the nonlinearly stretching boundary problem (i.e., n # 1) there is no exact solution. The quantities of
practical interest, in this study, are the Nusselt number and the Sherwood number which are defined as

— O — *am
Nﬂ-x k(T T::c-:', 5 hx DpilCy—Cp) (12)

where g, and g, are heat flux and mass flux at the surface, Acording to Kuznetsov and Nield [5], the
redused Nusselt number Nur and the redused sherwood number Shr which are defined respectively by

Nur = —8'(0), Shr = —0'(0) (13)
RESULT AND DISCUSSION

Egs.(8)-(10) subject to the boundary condition (11) have been solved numerically for some values of the
governing parameter Pr, Le, A, a/b, n and S using Matlab. The variation of the reduced Nusselt number Nur is
presented in Tablel.

Tables 2-4 represent the variation of tempreture 6(n) for three set of values of Nb, Pr, Le.

Figs. 1-10 show various feature of the tempreture function 6(n) and mass franction function @(1) for the
physical problem under consideration.

It is found from Fig. 1 and 2 that mass fraction function for A >0 is the same A <0 with the large or low
values the Lewis number Le and the thickness of the boundary layer for the mass fraction function decrease
when Le increase. It can also be seen that the thickness of the boundary layer for the large Le is smaller than the
low Le.
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Table 1: Variation of Nur with Nb for (a) Pr=10, Le=15, (b) Pr=15, Le=25, (c) Pr=20, Le=35

(a) Pr=10 Le=15 (b) Pr=15 Le=25 (c) Pr=20 Le=35
Nb Nur Nb Nur Nb Nur
0.1 1.643925601 0.1 1.562559071 0.1 1.343829517
0.2 0.873714735 0.2 0.515901373 0.2 0.242403023
0.3 0.40800399 0.3 0.106952174 0.3 -0.016867338
0.4 0.154962425 0.4 -0.020456911 0.4 -0.054124449
0.5 0.031127651 0.5 -0.049498044 0.5 -0.050192422
Table 2: Numerical values for () at Nb=0.1, Pr=10, Le=10
0 oM om oM
0.1 0.81155238 0.6 0.11083327 1.1 0.004078955
0.2 0.61861859 0.7 0.06245164 1.2 0.001889501
0.3 0.44201482 0.8 0.03354519 1.3 0.000850861
0.4 0.29609228 0.9 0.01725260 14 0.000373367
0.5 0.18647339 1.0 0.00853555 1.5 0.000160031
Table 3: Numerical values for () at Nb=0.5, Pr=30, Le=15
n oM n om) | om)
0.1 1.009997615 0.6 0.1692963 1.1 2.78E-05
0.2 1.013051416 0.7 0.04775537 1.2 2.93E-06
0.3 0.955997662 0.8 0.010079176 1.3 2.80E-07
0.4 0.747392664 0.9 0.001682381 1.4 2.44E-08
0.5 0.426487153 1.0 0.000232968 15 1.97E-09
Table 4: Numerical values for (1) at Nb=0.3, Pr=40, Le=50
n o) n o) n o)
0.1 1.004452097 0.6 0.003038621 1.1 6.00E-09
0.2 0.899993055 0.7 0.000305963 1.2 2.85E-10
0.3 0.488974669 0.8 2.56E-05 1.3 1.21E-11
0.4 0.13817392 0.9 1.82E-06 1.4 4,65E-13
0.5 0.024021314 1.0 1.12E-07 15 1.62E-14
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Fig. 1: Effect of A and Le on concentration distribution for A=(0.1,-0.1) when a/b,k;,Nb=0.1, n=2, Nt=0, S=1,
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Fig. 5: Effect of a/b and Le on concentration distribution for a/b=(0.1,2) when A,k;,Nb=0.1, n=2, Nt=0, S=1,
Pr=10
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Fig. 6: Effect of a/b and Le on concentration distribution for a/b=(0.1,2) when A,k;,Nb=0.1, n=2, Nt=0, S=1,
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Fig. 7: Effect of a/b and Pr on tempreture distribution for a/b=(0.1,2) when A,k;,Nb=0.1, n=2, Nt=0, S=1, Le=10
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Fig. 8: Effect of a/b and Pr on tempreture distribution for n=(0.1,2) when A.k;,Nb=0.1, n=2, Nt=0, S=1, Le=10
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Fig. 9:

Fig. 10: Effect of n and Le on concentration distribution for n=(1,2) when a/b,A.k;,Nb=0.1, Nt=0, S=1, Pr=10

Fig. 11: Effect of n and Pr on tempreture distribution for n=(1,2) when a/b,A,k;,Nb=0.1, Nt=0, S=1, Le=10
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Fig. 15: Effect of S and Pr on tempreture distribution for S=(0.1,-0.1) when a/b,A.k;,Nb=0.1, n=2, Nt=0, Le=10
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Fig. 16: Effect of S and Pr on tempreture distribution for S=(0.1,-0.1) when a/b,A,k;,Nb=0.1, n=2, Nt=0, Le=10

Fig. 3 and 4 show the effrct of Lewis number Le in heat source (A>0) and heat sink (A<0) cases on the
tempreture for a/b,k;,Nb=0.1, n=2, Nt=0, S=1, Le=10 and Pr=10,20,100,200.

Fig. 5 and 6 show the variation values of the Lewis number Le in a/b<1 and a/b>1 cases for A,k;,Nb=0.1,
n=2, Nt=0, S=1, Pr=10 and Le=10,20,100,200.

Fig. 7 and 8 shows the effect of Prandtl number Pr on the tempreture distribution for a/b<1 and a/b>1. It is
seen that for a low value of Pr the tempreture distribution for a/b<1 is greater than for a/b>1.

Fig. 9-12 show the variation of tempreture and concentration distribution with various values of the Lewis
number Le and Prandtl number Pr in n=1 and n#l for a/b,\,k;,Nb=0.1, n=2, Nt=0, S=1, Le=10,100 and
Pr=10,100.

Fig. 13-16 present the effect of Le and Pr on tempreture and concentration distribution in blowing (S<0)
and suction (S>0) cases. It is seen that for various values of Le and low values of Pr tempreture and
concentration for S<O0 is greater than for S>0.

Conclusions:

we have obtained the similarity solutions of a two-dimensional laminar forced convection flow over a
permeable nonlinearly stretching surface in a porous medium saturated by a nanofluid. This solution depends on
Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, permeability parameter kj,
suction/injection parameter S, heat generation/absorption parameter A, Prandtl number Pr, nonlinearly parameter
n and the parameter a/b. The inclusions of nanoparticles into the base fluid of this problem changes the flow
pattern. The numerical results have been also presented in the form of graphs and tables.
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