

AENSI Journals

Journal of Applied Science and Agriculture **ISSN 1816-9112**

Journal home page: www.aensiweb.com/jasa/index.html

Rating and Comparing of Multiple Aspect Alternatives Based on Centroid Index

¹H. Heidari and ²R. Saneifard

^{1,2}Department of Applied Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran.

ARTICLE INFO

Article history:
Received 23 January 2014
Received in revised form 15 April 2014
Accepted 25 April November 2014
Available online 5 May 2014

Key words: Ranking, Fuzzy numbers, Centroid point, Defuzzification

ABSTRACT

In this study, a simple and a new centroid-indexranking method of fuzzy numbers is proposed. Our method isbased on calculating the centroid point, where the distance meansfrom minimum point to the centroid (x_0, y_0) , and the x_0 and y_0 indexes are the same as Wang $et\ al.$'s (Wang $et\ al.$, 2006) x_0 and y_0 . Thus, weuse a ranking function (distance index) as the order quantities invague environment. By utilizing this index, a method is presentedfor effectively ranking various fuzzy numbers and their imagesto overcome the deficiencies of the previous techniques. Finally, several numerical examples following the procedure indicate theranking results to be valid.

 $\ensuremath{\mathbb{O}}$ 2014 AENSI Publisher All rights reserved.

To Cite This Article: H. Heidari, R. Saneifard., Rating and Comparing of Multiple Aspect Alternatives Based on Centroid Index. *J. Appl. Sci. & Agric.*, 9(4): 1969-1974, 2014

INTRODUCTION

Ranking of fuzzy numbers has been a concern in fuzzymultiple attribute decision-making because of its inception. Morethan 20 fuzzy ranking indices have been proposed since 1976. Various techniques are applied to compare the fuzzy numbers. Centroid-index methods among the existing ranking methods, have been extensively studied and applied to solve many decision makingproblems. However, there are some drawbacks in the existing centroid ranking methods, i.e., they can't correctly rankfuzzy numbers in some situations. Hence, in this article, theauthors present a novel technique for ordering fuzzy numbers (normal/nonnormal/trapezoidal/general). The proposedmethod considers the centroid points and the minimum crispvalue of fuzzy numbers to deal with fuzzy number rankingproblems. The proposed method can overcome the drawbacksof the existing centroid index ranking methods. In this articlealso there are some examples, comparing the proposed method withother ranking techniques.

The Centroid Formulae For Fuzzy Numbers:

A fuzzy number is a convex fuzzy subset of the real line \Re and is completely defined by itsmembership function. If A be a fuzzy number, its membership function $f_A(x)$ can generally defined as (Dubois *et al.*, 1978; Saneifard *et al.*, 2010b; Saneifard, 2010b; Saneifard *et al.*, 2011b),

$$f_{A}(x) = \begin{cases} f_{A}^{L}(x), & when \ a \leq x \leq b, \\ \omega, & when \ b \leq x \leq c, \\ f_{A}^{R}(x), & when \ c \leq x \leq d, \\ 0, & otherwise. \end{cases}$$
 (1)

Where $0 \le \omega \le 1$ is a constant, $f_A^L:[a,b] \to [0,\omega]$ and $f_A^R:[c,d] \to [0,\omega]$ are two strictlymonotonically and continuous mappings from \Re to closed interval $[0,\omega]$. If $\omega=1$, then A is anormal fuzzy number; otherwise it is said to be a non-normal fuzzy number. If the membershipfunction $f_A(x)$ is piecewise linear, then A is consider as a trapezoidal fuzzy number and is usually denoted by $A=(a,b,c,d;\omega)$. In particular, when b=c, the trapezoidal fuzzy number reduced to a triangular fuzzy number. Since $f_A^L(x)$ and $f_A^R(x)$ are both strictly monotonically and continuous functions, their

inverse functions exist and should also be continuous and strictly monotonically. Let $g_A^L:[0,\omega] \to [a,b]$ and $g_A^R:[0,\omega] \to [c,d]$ be the inverse functions of f_A^L and f_A^R , respectively. Then $g_A^L(y)$ and $g_A^R(y)$ should

be integrable on the closed interval $[0,\omega]$. In other words, both $\int_{-\infty}^{\infty} g_A^L(y)dy$ and $\int_{-\infty}^{\infty} g_A^R(y)dy$ should exist. In

the case of trapezoidal fuzzy number, the inverse function $g_A^L(y)$ and $g_A^R(y)$ can be analytically expressed as:

$$g_A^L(y) = a + \frac{(b-a)y}{\omega}, \ 0 \le y \le \omega,$$
 (2)

$$g_A^R(y) = d - \frac{(d-c)y}{\omega}, \ 0 \le y \le \omega. \tag{3}$$

In order to determine the centroid point (x_0, y_0) of a fuzzy number A, Wang et. al. (Wang et al., 2006) provided the following centroid formulae:

$$\frac{1}{x_{0}(A)} = \frac{\int_{a}^{b} x f_{A}^{L}(x)dx + \int_{b}^{c} (x\omega)dx + \int_{c}^{d} x f_{A}^{R}(x)dx}{\int_{a}^{b} f_{A}^{L}(x)dx + \int_{b}^{c} (\omega)dx + \int_{c}^{d} f_{A}^{R}(x)dx}, \tag{4}$$

$$\frac{1}{x_{0}(A)} = \frac{\int_{a}^{\omega} y(g_{A}^{R}(y) - g_{A}^{L}(y))dy}{\int_{a}^{\omega} (g_{A}^{R}(y) - g_{A}^{L}(y))dy}. \tag{5}$$

$$\frac{1}{y_0(A)} = \frac{\int_0^{\omega} y(g_A^R(y) - g_A^L(y))dy}{\int_0^{\omega} (g_A^R(y) - g_A^L(y))dy}.$$
(5)

Consider a general trapezoidal fuzzy number $A = (a, b, c, d; \omega)$, which its membership function is defined

$$f_{A}(x) = \begin{cases} \frac{\omega(x-a)}{b-a}, & when \ a \le x \le b, \\ \omega, & when \ b \le x \le c, \\ \frac{\omega(d-x)}{d-c}, & when \ c \le x \le d, \\ 0, & otherwise. \end{cases}$$

$$(6)$$

For this trapezoidal fuzzy number, the following results have been derived from (4)and (5)

$$\overline{x}_0(A) = \frac{1}{3} \left[a + b + c + d - \frac{dc - ab}{(d+c) - (a+b)} \right],\tag{7}$$

$$\overline{y}_0(A) = \omega \frac{1}{3} \left[1 + \frac{c - b}{(d + c) - (a + b)} \right]. \tag{8}$$

The ranking value R(A) of the fuzzy number A is defined as follows (Cheng, 1998):

$$R(A) = \sqrt{\frac{-2}{x_0}(A) + \frac{-2}{y_0}(A)} \ . \tag{9}$$

The larger value of R(A), the better ranking of A. In (Chu, 2002), the authors presented a centroid-index ranking method order fuzzy numbers. Thecentroid point of a fuzzy number A is (x_A, y_A) , where x_A and y_A are the same as (2) and (3) in (Chu, 2002). The ranking value S(A) of the fuzzy number A is defined as follow:

$$S(A) = x_A \times y_A. \tag{10}$$

The larger value of S(A), the better ranking of A.

A New Ranking Method For Fuzzy Numbers:

In this section, we present a new approach for ranking fuzzy numbers based on the distancemethod. This method not only considers the centroid point of a fuzzy number, but also considers the minimum crisp value of fuzzy numbers.

For ranking fuzzy numbers, this study firstly defines a minimum crisp value τ_{min} to be thebenchmark and its characteristic function $\mu_{\tau_{\min}}(x)$ is as follow:

$$\mu_{\tau_{\min}}(x) = \begin{cases} 1, & \text{when } x = \tau_{\min}, \\ 0, & \text{when } x \neq \tau_{\min}. \end{cases}$$

$$\tag{11}$$

By ranking n fuzzy numbers A_1, A_2, \ldots, A_n the minimum crisp value τ_{\min} is defined as:

$$\tau_{\min} = \min\{x | x \in Domain(A_1, A_2, \dots, A_n)\}. \tag{12}$$

The advantages of the definition of minimum crisp value are two-fold: first, the minimum crisp values will be obtained by themselves, and second, it is easy to compute.

Example 1:

Three fuzzy numbers A, B and C that had been illustrated by Chen (Chen, 1985) and their membership functions are shown in Table (1). The inverse functions calculated by (2) and (3) are also shown in this Table. By the (2), (3) and (12), this study obtains $\, \tau_{\rm min} \,$ and inverse functions as follows:

$$\tau_{\min} = \min \left\{ x \middle| x \in Domain(A, B, C) \right\} = \min \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.5, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2, 0.4, 0.8, 0.9 \right\} = 0.01, \text{ and } \left\{ 0.01, 0.1, 0.2,$$

$$g_{\min}(x) = \begin{cases} g_{\min}^{L}(x) = 0.01, \\ g_{\max}^{L}(x) = 0.01. \end{cases}$$

Table 1: Fuzzy numbers A, B and C.

Assume that there are n fuzzy numbers A_1, A_2, \dots, A_n . The proposed method for rankingfuzzy numbers A_1, A_2, \dots, A_n could be presented in 3 steps as follow:

Step 1. Use (4) and (5) to calculate the centroid point $(x_{0_{A_j}}, y_{0_{A_j}})$ of each fuzzynumbers A_j , where $1 \le j \le n$.

Step 2. Calculate the minimum crisp value τ_{\min} of all fuzzy numbers A_j , where $1 \le j \le n$.

Step 3. Use the point $(x_{0_{A_j}}, y_{0_{A_i}})$ to calculate the ranking value $Dist(A_j)$ of the fuzzy numbers A_j , where $1 \le j \le n$, as follow:

$$Dist(A_j) = \sqrt{(\overline{x}_{0_{A_j}} - \tau_{\min})^2 + (\overline{y}_{0_{A_j}} - 0)^2} = \sqrt{(\overline{x}_{0_{A_j}} - \tau_{\min})^2 + (\overline{y}_{0_{A_j}})^2} . \tag{13}$$

In (13), we get that $Dist(A_j)$ can be considered as the Euclidean distancebetween the points $(x_{0_{A_j}}, y_{0_{A_j}})$ and $(\tau_{\min}, 0)$, as shown in Figure 1.It could be obtain that the larger value of $Dist(A_j)$, the better ranking of A_j , where $1 \le j \le n$.

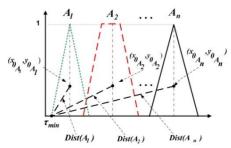


Fig. 1: The distance between $(x_{0_{A_i}}, y_{0_{A_i}})$ and the point $(\tau_{\min}, 0)$.

A is a fuzzy number characterized by (1) and Dist(A) is the Euclidean distance between the points $(x_{0_{A_i}}, y_{0_{A_i}})$ and $(\tau_{\min}, 0)$ of it.

In order to calculate a fuzzy number approximately by a scalar value, the researchershave to use an operator $Dist: F \to \Re$ (A space of all fuzzy numbers denoted by F) which transforms fuzzy numbers into a family of real line. Operator Dist is a crisp approximation operator. Since above defuzzification can be used as a crisp approximation of a fuzzy number, therefore the resultant value is used to rank the fuzzy numbers. Thus, Dist is used torank fuzzy numbers. The larger Dist, the larger fuzzy number.

Let $A_1, A_2 \in F$ be two arbitrary fuzzy numbers. Define the ranking of A_1 and A_2 by Dist on F as follow:

- (1) $Dist(A_1) > Dist(A_2)$ if only if $A_1 > A_2$,
- (2) $Dist(A_1) < Dist(A_2)$ if only if $A_1 \prec A_2$,
- (3) $Dist(A_1) = Dist(A_2)$ if only if $A_1 \sim A_2$.

However, this article formulates the orders \succeq and \preceq as $A_1 \succeq A_2$ if and only if $A_1 \succ A_2$ or $A_1 \sim A_2$, $A_1 \preceq A_2$ if and only if $A_1 \prec A_2$ or $A_1 \sim A_2$.

Remark 1.If inf $Supp(A) \ge 0$, then $Dist(A) \ge 0$.

Remark2.If inf $Supp(A) \le 0$, then $Dist(A) \ge 0$.

Here are some examples to illustrate the ranking of fuzzy numbers.

Examples:

In this section, we want to compare the proposed method with (Saneifard *et al.*, 2011a; Cheng, 1999; Yager *et al.*, 1993; Bass *et al.*, 1977; Chang, 1981; Saneifard *et al.*, 2007; Saneifard, 2009; Saneifard, 2010a; Saneifard *et al.*, 2010a; Saneifard *et al.*, 2010b).

Example 2:

Consider the data used in (Saneifard *et al.*, 2011), i.e. the three fuzzy numbers, A = (5,6,7), B = (5.9,6,7) and C = (6,6,7), as shown in Fig. 2.According to (13), the ranking index values are obtained i.e. Dist(A) = 1.05, Dist(B) = 1.34 and Dist(C) = 1.37. Accordingly, the ranking order of fuzzy numbers is $A \prec B \prec C$. However, by Chu and Tsao's approach (Chu *et al.*, 2002), the ranking order is $A \prec C \prec B$. Meanwhile, using CV index proposed (Cheng, 1998), the ranking order is $C \prec B \prec A$. From Figure 2, it is easy to see that the ranking results obtained by the existing approaches in (Chu *et al.*, 2002) and (Cheng, 1998) are unreasonable and are not consistent with human intuition. On the other hand, in (Saneifard *et al.*, 2011), the ranking result is $A \prec B \prec C$, which is the same as the one obtained by the writers approach. However, their approach issimpler in the computation procedure.

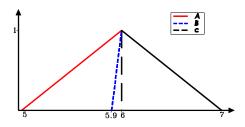


Fig. 2: Fuzzy numbers A, B, C

Example 3:

Consider the following sets: A = (1,2,5), B = (0,3,4) and C = (2,2.5,3). By using this new approach, Dist(A) = 1.69, Dist(B) = 1.37 and Dist(C) = 1.53. Hence, theranking order is $B \prec C \prec A$ too. It seems that, the result obtained by "Distance Minimization" method is unreasonable. To compare with some of the other methods as in (Chu *et al.*, 2002), the readers can refer to Table 2. Furthermore, in the mentioned example, Dist(-A) = 2.34, Dist(-B) = 3.48 and Dist(-C) = 2.85, consequently the ranking order of the images of the three fuzzy numbers is $-A \prec -C \prec -B$. Clearly, this proposed method has consistency in ranking fuzzy numbers and their images, which could not be supported by CV-index method.

Table 2: Comparative results of Example 3.

Fuzzynumber	New approach	Sign Distance With p=2	Distance Minimization	Chu-Tsao	CV Index	Magnitude method
A	1.69	3.91	2.5	0.74	0.32	2.16
В	1.37	3.91	2.5	0.74	0.36	2.83
C	1.53	3.55	2.5	0.75	0.08	2.50
Results	$B \prec C \prec A$	$C \prec A \sim B$	$C \sim A \sim B$	$A \sim B \prec C$	$B \prec A \prec C$	$A \prec C \prec B$

Table 3: The comparison with different ranking approaches.

Proposed method	Yager	Kerre	Chang	Bass and Kwakernaak
$\tilde{A}_1 \prec \tilde{A}_2$	$\tilde{A}_1 \prec \tilde{A}_2$	$\tilde{A}_1 \prec \tilde{A}_2$	$\widetilde{A}_1 \prec \widetilde{A}_2$	$\widetilde{A}_1 \prec \widetilde{A}_2$
$\widetilde{B}_1 \prec \widetilde{B}_2$	$\widetilde{B}_1 \sim \widetilde{B}_2$	$\widetilde{B}_1 \prec \widetilde{B}_2$	$\widetilde{B}_1 \succ \widetilde{B}_2$	$\widetilde{B}_1 \sim \widetilde{B}_2$
$\tilde{C}_1 \prec \tilde{C}_2 \prec \tilde{C}_3$	$\tilde{C}_1 \prec \tilde{C}_2 \prec \tilde{C}_3$	$\tilde{C}_1 \sim \tilde{C}_2 \prec \tilde{C}_3$	$\tilde{C}_1 \prec \tilde{C}_2 \prec \tilde{C}_3$	$\tilde{C}_1 \sim \tilde{C}_2 \prec \tilde{C}_3$
$\widetilde{D}_1 \prec \widetilde{D}_2 \prec \widetilde{D}_3$	$\widetilde{D}_1 \sim \widetilde{D}_2 \prec \widetilde{D}_3$			
$E_1 \succ \widetilde{E}_2$	$\widetilde{E}_1 \succ \widetilde{E}_2$	$\widetilde{E}_1 \succ \widetilde{E}_2$	$\tilde{E}_1 \succ \tilde{E}_2$	$\tilde{E}_1 \prec \tilde{E}_2$
$\widetilde{F}_1 \succ \widetilde{F}_2$	$\widetilde{F}_1 \prec \widetilde{F}_2$	$\widetilde{F}_1 \prec \widetilde{F}_2$	$\widetilde{F}_1 \succ \widetilde{F}_2$	$\widetilde{F}_1 \prec \widetilde{F}_2$
$\widetilde{G}_1 \prec \widetilde{G}_2 \prec \widetilde{G}_3$				
$\widetilde{H}_1 \prec \widetilde{H}_2 \prec \widetilde{H}_3$				
$\widetilde{I}_1 \succ \widetilde{I}_2$	$\tilde{I}_1 \sim \tilde{I}_2$	$\tilde{I}_1 \sim \tilde{I}_2$	$\widetilde{I}_1 \succ \widetilde{I}_2$	$\tilde{I}_1 \sim \tilde{I}_2$
$\widetilde{j}_1 \prec \widetilde{j}_2 \prec \widetilde{j}_3$	$\widetilde{j}_1 \prec \widetilde{j}_2 \prec \widetilde{j}_3$	$\widetilde{j}_1 \prec \widetilde{j}_2 \prec \widetilde{j}_3$	$\tilde{j}_1 \prec \tilde{j}_2 \prec \tilde{j}_3$	$\widetilde{j}_1 \prec \widetilde{j}_2 \prec \widetilde{j}_3$
$\widetilde{K}_1 \prec \widetilde{K}_2$				
$\widetilde{L}_1 \prec \widetilde{L}_2$	$\widetilde{L}_1 \prec \widetilde{L}_2$	$\widetilde{L}_1 \prec \widetilde{L}_2$	$\widetilde{L}_1 \succ \widetilde{L}_2$	$\widetilde{L}_1 \prec \widetilde{L}_2$

Example 4:

The *Dist* values of 12 examples are shown as follows. Also the ranking results are shown in Table 3. In this Table, the main findings and *Dist* with some advantages are as follow:

1. In example L and K, some methods use complicated and normalized process to rank andthey can't obtain consistent results. However, the proposed method is more suitable for rankingany kind of fuzzy number without normalization process.

2.About fuzzy numbers with the same mean (Examples B, I), Yager(Yager $et\ al.$, 1993), Kerre(Wang $et\ al.$, 2001), Bass (Bass $et\ al.$, 1977) have not been able to obtain their orderings. Chang's method (Chang, 1981) has been ableto rank fuzzy number orderings, but Chang's results to eclipsedthe smaller spread, the higher ranking order.In Example B and I, shows that the proposed method can rank instantly and their results comply with intuition of human being.

- **3.** In Examples C, D and L, we can see that the methods of Kerre(Wang *et al.*, 2001), Bass (Bass *et al.*, 1977) have many limitations in triangle, trapezoid, non-normalized fuzzy numbers and so on.
- **4.** The proposed method can be used for ranking fuzzy numbers and crisp values, while Yager hasnot been able to handle the crisp value problem (Yager *et al.*, 1993).

5.Kerre's method would support a fuzzy number with smaller area measurement, regardless of its relative location on the X-axis (Wang *et al.*, 2001). The results are against their intuition in examples C and D. According to Table 3, one can get that the proposed method is able to solve the problem.

All above examples show that this method is more consistent with institution than theprevious ranking methods.

Conclusion:

In this article, authors presented a new method for ranking fuzzy numbers. The proposedmethod considers the centroid points and maximum crisp value of fuzzy numbers to rankingfuzzy numbers. Centroid method can overcome the drawback previous centroid methods.

REFERENCES

Bass, S.M., H. Kwakernaak, 1977. Rating and ranking of multiple aspect alternatives using fuzzy sets. Automatica, (13): 47-58.

Chang, W., 1981. Ranking of fuzzy utilities with triangular membership function. Proceeding of the International conference on policy analysis information system, (105): 263-272.

Chen, S.H., 1985. Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets and Systems, (17); 113-129.

Cheng, C.H., 1998. A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets and Systems, (95): 307-317.

Cheng, C.H., 1999. Ranking alternatives with fuzzy weights using maximizing set and minimizing set. Fuzzy Sets and System, (105): 365-375.

Chu, T.C., 2002. Ranking fuzzy numbers with an area between the centroid point and original poind. Comput Math Appl., (43): 111-117.

Dubois, D., H. Prade, 1978. Operation on fuzzy numbers. Internat. J. Syst. Sci., (9): 613-626.

Saneifard, R., R.Saneifard, 2011a. A method for defuzzification based on radius of gyration. Journal of Applied Sciences Research, (3): 247-252.

Saneifard, R., T. Allahviranloo, F. Hosseinzadeh, N. Mikaeilvand, 2007. Euclidean ranking DMUswith fuzzy data in DEA. Applied Mathematical Sciences, (60): 2989-2998.

Saneifard, R., 2009. Ranking L-R fuzzy numbers with weighted averaging based on levels. Int. J. Industrial Mathematics, (2): 163-173.

Saneifard, R., 2010a. A method for defuzzification by weighted distance. Int. J. Industrial Mathematics, (3): 209-217.

Saneifard, R., R. Ezatti, 2010. Defuzzificationthrough a bi-Symmetrical weighted function. Aust. J. Basic appl. Sci., (10): 4976-4984.

Saneifard, R., 2010a. Defuzzification through a novel approach. Proc.10th Iranian Conference on Fuzzy Systems, (12): 343-348.

Saneifard, R., 2010b. A new approach for ranking of fuzzy numbers with continuousweighted quasi-arithmetic means. Mathematical Sciences, (4): 143-158.

Saneifard, R., R. Saneifard, 2011b. On the weighted intervals of fuzzy numbers. Journal of Applied Sciences Research, (3): 229-235.

Saneifard, R., R. Saneifard, 2010b. A comparative study of defuzzification through a regular weighted function. Journal of Applied Sciences Research, (12): 6580-6589.

Wang, X., E.E. Kerre, 2001. Reasonable properties for the ordering of fuzzy quantities (I). FuzzySets and Systems, (118): 378-405.

Wang, Y.M., J.B. Yang, D.L. Xu and K.S. Chin, 2006. On the centroids of fuzzy numbers. FuzzySets and Systems, (157): 919-926.

Yager, R.R., D.P. Filev, 1993. On the issue of defuzzification and selection based on a fuzzy set. Fuzzy Sets and Systems, (55): 255-272.