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 In this paper we introduce a new matrix method based on shifted Jacobi operational 
matrix for solving Lane – Emden type equations.TheLane – Emden type 

equationsarising in astrophysics. First we introduce the shifted Jocobi operational 

matrix of derivative and then by use of this operational matrix we numerically solved 
Lane – Emden type equations.Some illustrative examples are given to demonstrate the 

efficiency and validity of the proposed method. 
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INTRODUCTION 

 

The Lane – Emden differential equation of the well studied classical equation of nonlinear 

mechanics,named after the pioneering work of Lane (Lane, J.H., 1870) and Emden (1907), the equation 

describes the equilibrium of nonrotating poyltropic fluids in aself-gravitating star. The equation has been  

studied extensively by physicists because of its application in astrophysics and also because of its importance in 

the Kinetics of combustion and the Landau-Ginzburg critical phenomena (Dixon, J.M., J.A., Tuszynski, 1990; 

Fermi, E., 1927; Fowler, R.H., 1930; Frank-kamenetskii, D.A., 1995). For mathematicians, fascination with the 

Lane–Emden equation might derive partly from its nonlinearity and singular behavior at the origin. Solving  the 

Lane–Emden equation analytically in closed form is only possible for the polytropic indices 𝑛 = 0,1,5 .The 

studies of singular initial value problems modeled by second order nonlinear ordinary differential equations 

(ODEs) have attracted many mathematicians and physicists. One of the equations in this category is the 

following Lane – Emden type equations: 

𝑦"(𝑥) +
𝛼

𝑥
𝑦′(𝑥) + 𝑓(𝑥, 𝑦) = 𝑔(𝑥),      𝛼, 𝑥 ≥ 0,                                                                                                               (1) 

With initial conditions are 

𝑦 0 = 𝑎  𝑎𝑛𝑑   𝑦′ 0 = 0.                                                                                                                                                   (2) 

Where the prime denotes the differentiation with respect to ,  x  is constant,  𝑓(𝑥, 𝑦)  is a nonlinear 

function of 𝑥and𝑦. It is well known that an analytic solution of Lane – Emden type equations (1) is always 

possible (Davis, H.T., 1962), in the neighborhood of the singularpoint  𝑥 = 0 . Taking 𝛼 = 2,   𝑓 𝑥, 𝑦 =
𝑦𝑛 ,   𝑔(𝑥) = 0 and 𝑎 = 1 in Eqs. (1) and (2), respectively, we get 

𝑦"(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑦𝑛 = 0,      𝑥 ≥ 0,                                                                                                                                   (3) 

which has another form, 
1

𝑥2

𝑑

𝑑𝑥
 𝑥2

𝑑𝑦

𝑑𝑥
 + 𝑦𝑛 = 0 ,                                                                                                                                                      (4) 

with theinitial conditions: 

𝑦 0 = 1 ,   𝑦′ 0 = 0 .                                                                                                                                                           (5) 

Classically,  Eqs. (4) and (5) are known as the Lane – Emden equations. Similarly, by choosing 𝛼 = 2,
𝑓 𝑥, 𝑦 = 𝑒𝑦  , 𝑔 𝑥 = 0 , 𝑎 = 1  in Eqs. (1) and (2), isothermal gas spheres equation are modeled by 

𝑦"(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑒𝑦(𝑥) = 0,      𝑥 ≥ 0,                                                                                                                               (6) 

Withinitial conditions 

𝑦 0 = 0 ,   𝑦′ 0 = 0.                                                                                                                                                            (7) 
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The solutions of the Lane – Emden equations for a given index-𝑛 are known as polytrophic index-𝑛. In Eq. 

(3), the parameter  𝑛  physical significance in the rang0 ≤ 𝑛 ≤ 5. Eq. (3)  withinitial conditions (5) has well 

known analytical solutions for 𝑛 = 0,1,5 (Chandrasekhar, S., 1967), and for other values of𝑛 , numerical 

solutions is sought. The series solution can be found by perturbation techniques and Adomian decomposition 

methods (ADM). However, these solutions are often, convergent in restricted regions. Thus, some techniques 

such as Pade method are required to enlarge the convergent regions (Wazwaz, A.M., 2001). 

 Recently, a number of methods have been proposed to solve Eq.(1) with 𝛼 = 2, 𝑓 𝑥, 𝑦 = 𝑓 𝑦 , a function 

of  𝑦  alone and 𝑔 𝑥 = 0 , same recent techniques are quasilineariziationmethod (Mandelzweing, V.B., F. 

Tabakin, 2001; Krives, R., V.B. Mandelzweing, 2001; Krives, R., V.B. Mandelzweing, 2008), a piecewise 

linearization technique (Ramos, J.I., 2003) based on the piecewise linearization of the Lane – Emden equation 

and the analytic solution of the coefficients ordinary differential equations, the homotopy analysis method  

(HAM) (Liao, S.J., 2003), and a variationalapproach using a semi – inverse method to obtain  variational 

principle [15] quasilineariziation and may employ the Ritz technique to obtain approximate solutions  (He, J.H., 

2003; He, J.H., 2003; He., J.H., 2003). Later, singh et al. (2009), applied modified homotopy analysis method  

(MHAM) for the first time to obtain analytical approximate solution contains the previous solution obtained by 

ADM and HPM. Yousefi (2006), has obtained the numerical solution of the Lane – Emden equation (1) by 

converting in to an integral and then using. Legender wavelets for 0 ≤ 𝑥 ≤ 1. Hybrid functions has been also 

used by Marzban et al. (2008) to find out the numerical solution of (1) for some particular nonlinear case in 

2008.In same year, Dehghan and Shakeri (2008) used the exponential transformation 𝑥 = 𝑒𝑡  with 𝛼 = 2,
𝑓 𝑥, 𝑦 = 𝑓 𝑦  and 𝑔 𝑥 = 0 to get 

𝑦  𝑡 + 𝑦  𝑡 + 𝑒2𝑡𝑓 𝑦 𝑡  = 0,                                                                                                                                            (8) 

Subject to the conditions  

lim
𝑡→−∞

𝑦 𝑡 = 𝑎,             lim
𝑡→∞

𝑒−𝑡 𝑦  𝑡 = 0.                                                                                                                            (9) 

Where the symbol.denotes differentiation with respect to t and then applied variational iteration method 

(VIM) for the approximate solution.Some more approximate solutions to Lane–Emden equationshave also been 

proposed by using Legendre spectral method (Adibi, H., A.M. Rismani, 2010), Chebyshev polynomial 

collocation method (Yang, C., J. Hou, 2010), Hermite function collocation method (Parand, K., et al., 2010), 

Lagrangian method (Parand, K., et al., 2010), radialbasis function approximation (Parand, K., et al., 2011) and 

optimalhomotopy asymptotic method (Iqbal, S., A. Javed, 2011). In the sameyear, Van Gorder (2011; 2011) 

presented the perturbation techniqueand delta-expansion method respectively to obtain the analyticsolution of 

singular Lane–Emden type equation. Moreover, Bhrawyand Alofi (2012) used Jacobi–Gauss collocation method 

and Pandey and Kumar (2012) used Bernstein’s operational matrices for solvingnonlinear Lane–Emden type 

equations. 

In present work we used Jocobi operational matrix of derivative for solving Lane – Emden type equations. 

As we show implementation of this method is very easy and the accuracy of answers is high. This paper is 

organized as follows: Section 2 represents preliminaries; in this section we introduced shiftedJacobi 

polynomials, and some properties of them, especiallythe operational matrix of derivative. In Section 3 we 

implemented them on Lane – Emden equation. In Section 4, some applied models are discussedLane – Emden 

equations to show the efficiency and accuracy of the proposed method. Finally, Section 5 includes a conclusion 

for the paper. 

 

2. Shifted Jacobi polynomials and their operational matrix of derivative: 

2.1. Shifted Jacobi Polynomials: 

The well-known Jacobi polynomials are defined on the interval  −1,1 and can be generated with the aid of 

the following recurrence formula: 

Pi
 α,β  t =

 α + β + 2i − 1  α2 − β
2 + t α + β + 2i  α + β + 2i − 2  

2i α + β + i  α + β + 2i − 2 
Pi−1

 α,β  t   

−
 α + i − 1  β + i − 1  α + β + 2i 

i α + β + i  α + β + 2i − 2 
Pi−2

 α,β  t ,                               i = 2,3, ⋯ 

Where 

P0
 α,β  t = 1 andP1

 α,β  t =
𝛼+𝛽+2

2
𝑡 +

𝛼−𝛽

2
. 

In order to use these polynomials on the interval 𝑥 𝜖  0, 𝐿 ,Doha and et al. in [33]derived the so-called 

Shifted Jacobi polynomials by introducing the change of variable𝑡 =
2𝑥

𝐿
− 1. Let the ShiftedJacobi polynomials 

PL,i
 α,β 

 
2𝑥

𝐿
− 1 be denoted byPL,i

 α,β  x . Then PL,i
 α,β  x  can be generated form: 

PL,i
 α,β  x =

 α + β + 2i − 1  α2 − β
2 +  

2𝑥

𝐿
− 1  α + β + 2i  α + β + 2i − 2  

2i α + β + i  α + β + 2i − 2 
PL,i−1

 α,β  x  
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−
 α + i − 1  β + i − 1  α + β + 2i 

i α + β + i  α + β + 2i − 2 
PL,i−2

 α,β  x ,                               i = 2,3, ⋯ 

Where 

PL,0
 α,β  0 = 1andPL,1

 α,β  1 =
𝛼+𝛽+2

2
 

2𝑥

𝐿
− 1 +

𝛼−𝛽

2
. 

The analytic form of the Shifted Jacobi polynomialsPL,i
 α,β  x  of degree 𝑖 isgiven by 

PL,i
 α,β  x =   −1 𝑖−𝑘

𝑖

𝑘=0

Γ 𝑖 + 𝛽 + 1 Γ 𝑖 + 𝑘 + 𝛼 + 𝛽 + 1 

Γ 𝑘 + 𝛽 + 1 Γ 𝑖 + 𝛼 + 𝛽 + 1  𝑖 − 𝑘 ! 𝑘! 𝐿𝑘
𝑋𝑘 .     

Where 

PL,i
 α,β  0 =  −1 𝑖

Γ 𝑖+𝛽+1 

Γ 𝛽+1 𝑖!
 ,          PL,i

 α,β  L =
Γ(𝐼+𝛼+1)

Γ 𝛼+1 𝑖!
. 

 

2.2. Function Approximation: 

The orthogonally condition of ShiftedJacobipolynomials is  

 PL,j
 α,β  x PL,k

 α,β  x 𝑊𝐿
 𝛼,𝛽 

𝐿

0

 𝑥 𝑑𝑥 = 𝑕𝑘 ,      

Where 𝑊𝐿
 𝛼,𝛽 

 𝑥 = 𝑥𝛽 𝐿 − 𝑥 𝛼     and   𝑕𝑘 =  
𝐿𝛼+𝛽+1Γ 𝐾+𝛼+1 Γ 𝐾+𝛽+1 

 2𝐾+𝛼+𝛽+1 𝐾!Γ 𝐾+𝛽+𝛼+1 
     ,    𝑖 = 𝑗,

0                                                   𝑖 ≠ 𝑗.

  

Let 𝑢(𝑥) be a polynomial of degree ,n  then it may be expressed in terms of Shifted Jacobi polynomials as  

𝑢 𝑥 =  𝑐𝑗

𝑁

𝑗=0

𝑃𝐿,𝑗
 𝛼 ,𝛽 

 𝑥 = 𝐶𝑇Φ 𝑥 ,                                                                                                                                (10) 

Where the coefficients 𝑐𝑗  are given by  

𝑐𝑗 =
1

𝑕𝑗
 𝑊𝐿

 𝛼,𝛽 
 𝑥 𝑢(𝑥)

𝐿

0

PL,j
 α,β  x 𝑑𝑥.                    𝑗 = 0,1, ⋯ 

If the Shifted Jacobi coefficient vector C and the Shifted Jacobivector Φ 𝑥  are written as  

𝐶𝑇 =  𝑐0 , 𝑐1 , … , 𝑐𝑁 ,                                                                                                                                                              (11) 
and 

Φ 𝑥 =  PL,0
 α,β  x  , PL,1

 α,β  x  , … , PL,N
 α,β  x  

𝑇

.                                                                                                                   (12) 

 

2.3.Operational   Matrixof Derivative: 

The derivative of the vector Φ 𝑥  can be expressed by  
𝑑Φ 𝑥 

𝑑𝑥
= 𝑫(1) Φ 𝑥 ,                                                                                                                                                             (13)  

Where 𝑫(1) is the  𝑁 + 1 ×  𝑁 + 1 Operational   matrix of derivative given by 

𝑫(1) =  𝑑𝑖𝑗  =  
𝐶1 𝑖, 𝑗                                𝑖 > 𝑗,
0                              𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒,

  

Where  

𝐶1 𝑖, 𝑗 =
𝐿𝛼+𝛽  𝑖+𝛼+𝛽+1  𝑖+𝛼+𝛽+2 𝑗  𝑗+𝛼+2 𝑖−𝑗−1Γ 𝑗+𝛼+𝛽+1 

 𝑖−𝑗−1 !Γ 2𝑗+𝛼+𝛽+1 
× 𝐹23  −𝑖+1+𝑗 ,      𝑖+𝑗+𝛼+𝛽+2,     𝑗+𝛼+1

𝑗+𝛼+2,          2𝑗+𝛼+𝛽+2                     ; 1
 . 

For the proof, see[34], and for the general definition of a generalized  hyper geometric  series and 

special 𝐹2 3  , see [35], p. 41 and pp. 103-104, respectively. 

For example, for even N we have 

 

 

   

   

     

1

1 11

1 1

1 1 1

0 0 0 0

1,0 0 0 0

2,0 2,1 0 0

3,0 3,1

0 0

,0 ,1 , 1 0

C

C C

C C

C N C N C N N

 
 
 
 

  
 
 
 

  







  

 



D . 

By using (13), it is clear that  
𝑑𝑛Φ(𝑥)

𝑑𝑥𝑛
=  𝑫 1  

𝑛
𝛷 𝑥 .                                                                                                                                                      (14) 

Where 𝑛 𝜖 𝑁and the superscript in𝑫 1 , denotes matrix powers. Thus 
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𝑫 1 =  𝑫 1  
𝑛

,         𝑛 = 1,2, ⋯. 

 

3. Application of the shifted Jacobi polynomials of derivatives: 

This section present the implementation of the proposed method for solving Lane – Emden type equations. 

Let consider the Lane – Emden equations of the form 

𝑦"(𝑥) +
𝛼

𝑥
𝑦′(𝑥) + 𝑓(𝑥, 𝑦) = 𝑔(𝑥),      𝛼, 𝑥 ≥ 0,                                                                                                             (15) 

With initial conditions: 

𝑦 0 = 𝑎  ,   𝑦′ 0 = 0,                                                                                                                                                         (16) 

Approximating  𝑦(𝑥) ,𝑓(𝑥, 𝑦) and 𝑔(𝑥) by shifted Jacobi polynomials as 

𝑦 𝑥 ≈  𝑐𝑖𝑃𝑖
 𝛼 ,𝛽 

 𝑥 =

𝑁

𝑖=0

𝐶𝑇𝚽 𝑥  ,                                                                                                                                   (17) 

𝑓 𝑥, 𝑦 ≈ 𝑓 𝑥, 𝐶𝑇𝚽 𝑥  = 𝐻𝑇𝚽 𝑥 , 

𝑔 𝑥 ≈   𝑐𝑖𝑃𝑖
 𝛼,𝛽 

 𝑥 =

𝑁

𝑖=0

𝐺𝑇𝚽 𝑥  ,                                       

Where the unknowns are 𝐶 =  𝑐0, … , 𝑐𝑁 
𝑇and 𝐻 =  𝑕0 , … , 𝑕𝑁 

𝑇 . 

Using operational matrix of differentiation Jacobi polynomial, Eq. (15) can be written as  

𝐶𝑇𝑫 2 𝚽 𝑥 +
𝛼

𝑥
𝐶𝑇𝑫 1 𝚽 𝑥 + 𝐻𝑇𝚽 𝑥 ≈ 𝐺𝑇𝚽 𝑥 .                                                                                                (18) 

The initial condition (16) are given by 

𝑦 0 = 𝐶𝑇𝚽 0 = 𝑑0 ,         𝑦′ 0 = 𝐶𝑇𝑫 1 𝚽 0 
= 𝑑1 .                                                                                                                                                        (19)  

Eqs. (18) and (19) give two linear equations. Since the total unknowns for vector C in Eq. (17) is (𝑁 + 1), 

we collocate Eq. (18) in (𝑁 − 2) points 𝑥𝑖  in the interval  0,1 as 

𝑥𝑝 =
2𝑝 − 1

2(𝑛 + 1)
  ,          𝑝 = 1,2, … , 𝑛 − 2 .                                                                                                                       (20) 

Then we will have  

𝐶𝑇𝑫 2 𝚽 𝑥𝑖 +
𝛼

𝑥𝑖

𝐶𝑇𝑫 1 𝚽 𝑥𝑖 + 𝐻𝑇𝚽 𝑥𝑖 ≈ 𝐺𝑇𝚽 𝑥𝑖 .                                                                                         (21) 

For  𝑖 = 1,2, … , 𝑁 − 2.  Now the resulting Eq. (19) and (21) generate a system of (𝑁 + 1)  nonlinear 

equations which can be solved using Newton’s iterative method. We used the Mathematica 8 software to  solve 

this nonlinear system. 

 

Illustrative examples: 

In this section Lane – Emden type equations have been solved using the proposed method. Some special 

cases on Eq. (1) have been considered to illustrate the efficiency of the proposed method. 

 

Example 1: 

Consider the following nonlinear Lane-Emden equation (Bhrawy, A.H., A.S. Alofi, 2012): 

𝑦"(𝑥) +
2

𝑥
𝑦′(𝑥) + 4(2𝑒𝑦 + 𝑦𝑦/2) = 0,     0 < 𝑥 < 1,        

The initial conditions 

𝑦 0 = 0,          𝑦′ 0 = 0,  
Which has the following analytical  solution: 

𝑦 𝑥 = −2𝐿𝑛 1 + 𝑥2 . 
We solved this problem by the discussed method in this paper and the results are tabulated in Table 1for 

𝑛 = 5 and𝑁 = 5,7 and the graph of this example for 𝑁 = 5 is shown in Fig 1. 

 

Table 1:Numerical results and exact solution of Example1 (By 1/ 2   ). 

𝑥𝑖  𝑛 = 5, 𝑁 = 5 𝑛 = 5, 𝑁 = 7 Exact Solution 

0.0 1.4103019250445328 × 10−17 7.454391538161295 × 10−17  0.0 

0.2 −0.07843587274288964 −0.07844124329194727 −0.07844142630656266 

0.4 −0.296833327179384 −0.2968399889772585 −0.29684001023654644 

0.6 −0.6146573068442458 −0.6149715914973282 −0.6149693994959214 

0.8 −0.9854149851785259 −0.9888118847330205 −0.989392483672214 

1.0 −1.3744915708740482 −1.3743826029381236 −1.3862943611198906 
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— Exact solution,   • •  Approximate solution 

 

Fig. 1: Graph of approximate and exact solution for Example 1 by  𝑁 = 5. 

 

Example 2: 

Consider the following nonlinear Lane-Emden equation (Pandey, R.K., N. Kumar, 2012): 

𝑦"(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑦𝑚 (𝑥) = 0,     0 < 𝑥 < 1,         

The initial conditions 

𝑦 0 = 1,          𝑦′ 0 = 0. 
For 𝑚 = 5 has the exact solution: 

𝑦 𝑥 = (1 +
𝑥2

3
)−

1

2 . 

The results of this example are tabulated in Table 2for  𝑛 = 7 and𝑁 = 5,8  also the absolute errors diagram 

is shown in Fig 2. 

 

Table 2:Numerical results and exact solution of example 2 (By 1/ 2   ). 

𝑥𝑖  𝑛 = 7,𝑁 = 7 𝑛 = 7,𝑁 = 8 Exact solution 

0.0 1. 1. 1. 
0.2 0.9933992643663808 0.9933992666446483 0.9933992677987828 

0.4 0.9743547009791806 0.9743547023820847 0.9743547036924463 

0.6 0.9449111876614282 0.9449111790456539 0.944911182523068 

0.8 0.9078403165966713 0.9078423781998256 0.9078412990032037 

1.0 0.8660200127162572 0.8660655866509445 0.8660254037844386 

 

 
 

Fig. 2: Graph of absolute error for𝑁 = 7 and 𝑁 = 8 . 
 

Example 3: 

For our last example we consider a real applied model that is coinside with the isothermal gas spheres 

equation (Pandey, R.K., N. Kumar, 2012): 

 

0.0 0.2 0.4 0.6 0.8 1.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
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𝑦"(𝑥) +
2

𝑥
𝑦′(𝑥) + 𝑒𝑦(𝑥) = 0,     0 < 𝑥 < 1,         

with the initial conditions :  

𝑦 0 = 0,          𝑦′ 0 = 0. 
We solved this example by 𝑛 = 5 and 𝑁 = 3,7,10which the results are tabulated in Table 3. 

 

Table 3: Numerical results of example 3 (By 1/ 2   ). 

𝑥𝑖  𝑛 = 5, 𝑁 = 3 𝑛 = 5, 𝑁 = 7 𝑛 = 5, 𝑁 = 10 

0.0 −2.026818324833851 × 10−18 5.449135329602926 × 10−18  −2.169539225852019 × 10−18 

0.1 −0.0016623432650043342 −0.001665833815921871 −0.001665833862071569 

0.2 −0.006649373060017323 −0.006653367182420695 −0.006653367100393262 

0.3 −0.014961089385038978 −0.014932883352746264 −0.014932883279792872 

0.4 −0.02659749224006929 −0.02645547639840369 −0.026455476337912082 

0.5 −0.04155858162510827 −0.04115395745464055 −0.041153957292674986 

0.6 −0.05984435754015591 −0.05894407445695956 −0.058944074762471425 

0.7 −0.08145481998521222 −0.07972601208776836 −0.07972600423521264 

0.8 −0.10638996896027718 −0.10338613865227785 −0.10338605319222009 

0.9 −0.1346498044653508 −0.12979896660276055 −0.12979852471375802 

1.0 −0.1662343265004331 −0.1588292934302806 −0.1588276816163989 

 

Conclusion: 

In this research, we have presentedthe numerical method based on shiftedJacobipolynomials for solving 

nonlinear singular Lane-Emden equation. Byuse of shifted Jacobi polynomials as basis and theoperational 

matrix of derivative of these functions weconvert such problems to a nonlinear system that can besolved by 

Newton’s method. The implementation of current approach is very simple, and we can execute this method on a 

computer speedy.  
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