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INTRODUCTION

The Lane — Emden differential equation of the well studied classical equation of nonlinear
mechanics,named after the pioneering work of Lane (Lane, J.H., 1870) and Emden (1907), the equation
describes the equilibrium of nonrotating poyltropic fluids in aself-gravitating star. The equation has been
studied extensively by physicists because of its application in astrophysics and also because of its importance in
the Kinetics of combustion and the Landau-Ginzburg critical phenomena (Dixon, J.M., J.A., Tuszynski, 1990;
Fermi, E., 1927; Fowler, R.H., 1930; Frank-kamenetskii, D.A., 1995). For mathematicians, fascination with the
Lane—Emden equation might derive partly from its nonlinearity and singular behavior at the origin. Solving the
Lane-Emden equation analytically in closed form is only possible for the polytropic indices n = 0,1,5 .The
studies of singular initial value problems modeled by second order nonlinear ordinary differential equations
(ODEs) have attracted many mathematicians and physicists. One of the equations in this category is the
following Lane — Emden type equations:

YO+ Y@ +f) = 9(), @x =0, W
With initial conditions are
y(0) =a and y'(0) = 0. (2)

Where the prime denotes the differentiation with respect to X, ¢ is constant, f(x,y) is a nonlinear
function of xandy. It is well known that an analytic solution of Lane — Emden type equations (1) is always
possible (Davis, H.T., 1962), in the neighborhood of the singularpoint x = 0. Taking a =2, f(x,y) =
y"*, g(x) =0and a = 1inEgs. (1) and (2), respectively, we get

2
y'(x) + ;y’(X) +y"=0, x=0, 3)
which has another form,
L ( 2 2 ) +y" =0 4
x%dx X dx y==u" )
with theinitial conditions:
y©0)=1, y(0)=0. (5)

Classically, Egs. (4) and (5) are known as the Lane — Emden equations. Similarly, by choosing a = 2,
fl,y)=e¢”,9g(x)=0,a=1 in Egs. (1) and (2), isothermal gas spheres equation are modeled by

2
Y+ 2y @) +e® =0, x20, (6)
Withinitial conditions
y(0) =0, y(0)=0. 7
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The solutions of the Lane — Emden equations for a given index-n are known as polytrophic index-n. In Eq.
(3), the parameter n physical significance in the rang0 < n < 5. Eq. (3) withinitial conditions (5) has well
known analytical solutions for n = 0,1,5 (Chandrasekhar, S., 1967), and for other values ofn, numerical
solutions is sought. The series solution can be found by perturbation techniques and Adomian decomposition
methods (ADM). However, these solutions are often, convergent in restricted regions. Thus, some techniques
such as Pade method are required to enlarge the convergent regions (Wazwaz, A.M., 2001).

Recently, a number of methods have been proposed to solve Eq.(1) with @ = 2, f(x,y) = f(y), a function
of y alone and g(x) = 0, same recent techniques are quasilineariziationmethod (Mandelzweing, V.B., F.
Tabakin, 2001; Krives, R., V.B. Mandelzweing, 2001; Krives, R., V.B. Mandelzweing, 2008), a piecewise
linearization technique (Ramos, J.I., 2003) based on the piecewise linearization of the Lane — Emden equation
and the analytic solution of the coefficients ordinary differential equations, the homotopy analysis method
(HAM) (Liao, S.J., 2003), and a variationalapproach using a semi — inverse method to obtain variational
principle [15] quasilineariziation and may employ the Ritz technique to obtain approximate solutions (He, J.H.,
2003; He, J.H., 2003; He., J.H., 2003). Later, singh et al. (2009), applied modified homotopy analysis method
(MHAM) for the first time to obtain analytical approximate solution contains the previous solution obtained by
ADM and HPM. Yousefi (2006), has obtained the numerical solution of the Lane — Emden equation (1) by
converting in to an integral and then using. Legender wavelets for 0 < x < 1. Hybrid functions has been also
used by Marzban et al. (2008) to find out the numerical solution of (1) for some particular nonlinear case in
2008.In same year, Dehghan and Shakeri (2008) used the exponential transformation x = et with a = 2,

f(x,y) = f(y) and g(x) = 0 to get

J(©) +y@) +e* f(y®) = 0, ®
Subject to the conditions
tlir_n y(@t) = a, }ime‘ty(t) =0. 9)

Where the symbol.denotes differentiation with respect tot and then applied variational iteration method
(VIM) for the approximate solution.Some more approximate solutions to Lane—Emden equationshave also been
proposed by using Legendre spectral method (Adibi, H., A.M. Rismani, 2010), Chebyshev polynomial
collocation method (Yang, C., J. Hou, 2010), Hermite function collocation method (Parand, K., et al., 2010),
Lagrangian method (Parand, K., et al., 2010), radialbasis function approximation (Parand, K., et al., 2011) and
optimalhomotopy asymptotic method (Igbal, S., A. Javed, 2011). In the sameyear, Van Gorder (2011; 2011)
presented the perturbation techniqueand delta-expansion method respectively to obtain the analyticsolution of
singular Lane—Emden type equation. Moreover, Bhrawyand Alofi (2012) used Jacobi—Gauss collocation method
and Pandey and Kumar (2012) used Bernstein’s operational matrices for solvingnonlinear Lane—Emden type
equations.

In present work we used Jocobi operational matrix of derivative for solving Lane — Emden type equations.
As we show implementation of this method is very easy and the accuracy of answers is high. This paper is
organized as follows: Section 2 represents preliminaries; in this section we introduced shiftedJacobi
polynomials, and some properties of them, especiallythe operational matrix of derivative. In Section 3 we
implemented them on Lane — Emden equation. In Section 4, some applied models are discussedLane — Emden
equations to show the efficiency and accuracy of the proposed method. Finally, Section 5 includes a conclusion
for the paper.

2. Shifted Jacobi polynomials and their operational matrix of derivative:
2.1. Shifted Jacobi Polynomials:

The well-known Jacobi polynomials are defined on the interval [—1,1]and can be generated with the aid of
the following recurrence formula:

@p o @+ B+2i—Dfo? —p* +tla+p+20)(a+p+2i—2)} p
RO = 20+ P+ D@+ P +2i-2) P (®
i(lo+B+i)(a+p+2i—2) B2 (©), =23
Where

PP (1) = 1andp(*P(t) = 22 ¢ + ZF,

In order to use these polynomials on the interval x e [0, L],Doha and et al. in [33]derived the so-called
Shifted Jacobi polynomials by introducing the change of variablet = sz — 1. Let the ShiftedJacobi polynomials
PL(ff‘B) (sz - 1)be denoted byPL(ff‘B) (x). Then PL(_‘;"ﬁ) (x) can be generated form:

(w+B+2i—Dfo? =+ (2= 1) (a+p+ 20 +p+2i—2)}

(@p) — (0,p)
P = pY
L () 2i(a+B+D)(a+B+2i—2) Li-1 ()
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(a+i—-1DP+i- 1)(G+B+21)P(“ﬁ)
e+ B+ D@+ P+2i—2) ~2
Where

RSP (0) = 1andpGP (1)="22 (2 - 1) + <F,
The analytic form of the Shifted Jacobi polynomiaIsPL(ﬁ“B) (x) of degree i isgiven by

(QB) i F(L+B+1)F(L+k+a+ﬁ+1)
(X)_Z( D kF(k+ﬁ+1)F(i+a+B+1)(i—k)!k!L" ‘

( ) i=2,3,...

Where
(a.p) _ (_1yi LG+8+1) (a[}) C(I+a+1)
R0 = (1) rg+it’ R @)= Ta+Dil

2.2. Function Approximation:
The orthogonally condition of ShiftedJacobipolynomials is

f PP ORY COW, P (x)dx = hy,
0

LYt (K +a+1)T(K+5+1) P=i
Where W(“ﬁ)(x) =xF(L—x)% and h, = {@Ktatp+DKTK+Brar) * - )

0 i #j.
Let u(x) be a polynomial of degree n, then it may be expressed in terms of Shifted Jacobi polynomials as
N
(a B) —_ T
u@ =) g BSP) = o), (10)
j=0
Where the coefficients ¢; are given by
G =1 f WP (o) Pf.‘}"ﬁ) (dx. j=01,-
Y Jo
If the Shifted Jacobi coefficient vector C and the Shifted Jacobivector ®(x) are written as
CT = [Co,Cl,...,CN], (11)
and
T
o@) = [FP® . PP, .. RSP . (12)

2.3.0perational Matrixof Derivative:
The derivative of the vector ®(x) can be expressed by

dd(x)
W = D(l) dD(x), (13)
Where DM isthe (N + 1) x (N + 1)Operational matrix of derivative given by
G (@, )) i>],
b = (4) = 6
( ) otherwise,
Where
c (L ) _ Lll'hg(i+a+ﬁ+1)(i+a+ﬁ+2)j(j+a+2)i_j_1f(}'+a+[3+l) E Q_i+l+j’ i+j+a+B+2, jra+l )
1) = (=~ @) +atf+1) 32 \jrat2,  2jtatp2 ;1)

For the proof, see[34], and for the general definition of a generalized hyper geometric series and
special 3F, , see [35], p. 41 and pp. 103-104, respectively.
For example, for even N we have

DW=

0 0o - 0 0
C,(L0) 0 - 0 0
C.(20) c,(21) - 0 0

C,(30) C,(31)

C,(N,0) C/(N,1) -~ C(N,N-1) O
By using (13), it is clear that

d"d(x) n
= (09) o). (14)

Where n e Nand the superscript inD™, denotes matrix powers. Thus
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DW= (DM)",  n=12,--
3. Application of the shifted Jacobi polynomials of derivatives:

This section present the implementation of the proposed method for solving Lane — Emden type equations.
Let consider the Lane — Emden equations of the form

a
Y+ oy )+ fy) =gx), ax=0, (15)
With initial conditions:
y(0)=a, y(0)=0, (16)
Approximating y(x) ,f (x,y) and g(x) by shifted Jacobi polynomials as
N
Y@ ~ Y aP P = o), a7)

i=0
fGx,y) sz(x, CTd(x)) =H ®(x),

90 = Y PP ) =T,
i=0
Where the unknowns are C = [cq, ..., cy]"and H = [hy, ..., hy]".
Using operational matrix of differentiation Jacobi polynomial, Eq. (15) can be written as

C"DPd(x) + % C"DDd(x) + H' ®(x) =~ GTd(x). (18)
The initial condition (16) are given by
y(0) =C"®(0) =dy, y'(0) =C"DPVD(0)
=d,. (19)
Egs. (18) and (19) give two linear equations. Since the total unknowns for vector C in Eq. (17) is (N + 1),
we collocate Eq. (18) in (N — 2) points x; in the interval [0,1]as

_ -1l =1,2 2 20
x”_Z(n+1)’ p=12,..,n . (20)
Then we will have
a
C"DPd(x,) + ;CTD“)(D(xi) + H'®(x;) =~ " ®(x;). (21)

L
For i=1,2,..,N—2. Now the resulting Eq. (19) and (21) generate a system of (N + 1) nonlinear
equations which can be solved using Newton’s iterative method. We used the Mathematica 8 software to solve
this nonlinear system.

Illustrative examples:
In this section Lane — Emden type equations have been solved using the proposed method. Some special
cases on Eq. (1) have been considered to illustrate the efficiency of the proposed method.

Example 1:
Consider the following nonlinear Lane-Emden equation (Bhrawy, A.H., A.S. Alofi, 2012):

2

y'(x) + ;y’(x) +4Qe¥ +y??) =0, 0<x<1,

The initial conditions
y() =0, y(0)=0,

Which has the following analytical solution:
y(x) = =2Ln(1 + x?).

We solved this problem by the discussed method in this paper and the results are tabulated in Table 1for
n = 5andN = 5,7 and the graph of this example for N = 5 is shown in Fig 1.

Table 1:Numerical results and exact solution of Examplel (By & = ﬂ =1/2 ).

X; n=5N=5 n=5N=7 Exact Solution
0.0 1.4103019250445328 x 10~/ 7.454391538161295 x 10~/ 0.0
0.2 —0.07843587274288964 —0.07844124329194727 —0.07844142630656266
0.4 —0.296833327179384 —0.2968399889772585 —0.29684001023654644
0.6 —0.6146573068442458 —0.6149715914973282 —0.6149693994959214
0.8 —0.9854149851785259 —0.9888118847330205 —0.989392483672214
1.0 —1.3744915708740482 —1.3743826029381236 —1.3862943611198906
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Fig. 1: Graph of approximate and exact solution for Example 1 by N = 5.

Example 2:
Consider the following nonlinear Lane-Emden equation (Pandey, R.K., N. Kumar, 2012):

2
y'(x)+ ;}I’(x) +y"(x) =0, 0<x<1,

The initial conditions
y =1 y'(©)=0.

For m = 5 has the exact solution:
2

x= 1
yx)=(Q1 t3)2
The results of this example are tabulated in Table 2for n = 7 andN = 5,8 also the absolute errors diagram

is shown in Fig 2.

Table 2:Numerical results and exact solution of example 2 (By & = ﬂ =1/2 ).

6x10°

4x10°

2x10°

X; n=7N=7 n=7N=8 Exact solution
0.0 1. 1. 1.
0.2 0.9933992643663808 0.9933992666446483 0.9933992677987828
0.4 0.9743547009791806 0.9743547023820847 0.9743547036924463
0.6 0.9449111876614282 0.9449111790456539 0.944911182523068
0.8 0.9078403165966713 0.9078423781998256 0.9078412990032037
1.0 0.8660200127162572 0.8660655866509445 0.8660254037844386
1x10*
8x10°

Fig. 2: Graph of absolute error forN = 7and N = 8.

Example 3:

For our last example we consider a real applied model that is coinside with the isothermal gas spheres
equation (Pandey, R.K., N. Kumar, 2012):
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2
Yo+ Y00 + e?® =0, 0<x<1,
with the initial conditions :

y(0) =0, y'(0)=0.

We solved this example by n = 5 and N = 3,7,10which the results are tabulated in Table 3.

Table 3: Numerical results of example 3 (By & = ,6 =1/ 2).

X; n=5N=3 n=5N=7 n=5N=10
0.0 —2.026818324833851 x 1018 5.449135329602926 x 10718 —2.169539225852019 x 1018
0.1 —0.0016623432650043342 —0.001665833815921871 —0.001665833862071569
0.2 —0.006649373060017323 —0.006653367182420695 —0.006653367100393262
0.3 —0.014961089385038978 —0.014932883352746264 —0.014932883279792872
0.4 —0.02659749224006929 —0.02645547639840369 —0.026455476337912082
0.5 —0.04155858162510827 —0.04115395745464055 —0.041153957292674986
0.6 —0.05984435754015591 —0.05894407445695956 —0.058944074762471425
0.7 —0.08145481998521222 —0.07972601208776836 —0.07972600423521264
0.8 —0.10638996896027718 —0.10338613865227785 —0.10338605319222009
0.9 —0.1346498044653508 —0.12979896660276055 —0.12979852471375802
1.0 —0.1662343265004331 —0.1588292934302806 —0.1588276816163989
Conclusion:

In this research, we have presentedthe numerical method based on shiftedJacobipolynomials for solving
nonlinear singular Lane-Emden equation. Byuse of shifted Jacobi polynomials as basis and theoperational
matrix of derivative of these functions weconvert such problems to a nonlinear system that can besolved by
Newton’s method. The implementation of current approach is very simple, and we can execute this method on a
computer speedy.
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