Journal of Applied Science and Agriculture, 9(4) April 2014, Pages: 1359-1365

Journal of
Applied
Science
and

AENSI Journals

Journal of Applied Science and Agriculture
ISSN 1816-9112

v

wwork fo
S
&\ %,

&)

Agriculture

DD

aerican

o 5{/@
LY
I

Yonew10p\

Journal home page: www.aensiweb.com/jasa/index.html

|
Stochastic Optimization Techniques to the Redundancy Allocation Problem for Series
Systems

Farshad Kiyoumarsi and “Narges Asgharian

“2|slamic Azad University-Shahrekord Branch, Engineering Department, Faculty of Computer, Shahrekord, Iran.

ARTICLE INFO ABSTRACT
Article history: Background: Various reliability (Barlow, R.E., Proschan, F., 1975) optimization
Received 20 January 2014 approaches have been suggested in the past three decades (Tillman, F.A.,Hwang,

Received in revised form 16 C.L. and Kuo, W, 1977). Stochastic programming models for general redundancy-

15 April 2014
Accepted 25 April November 2014
Available online 5 May 2014

Key words:
Stochastic Optimization
techniques,

optimization problems have been studied by Zhao et al (Zhao, R.and Liu, B., 2003).
Stochastic  programming models pose as reformulations or extensions of reliability
optimization problems with chance  parameters Objective: This paper aims to
maximize system reliability for the given chance constraints. To achieve this end, a
method is explained to determine optimal solutions to an n-stage series system with m
chance constraints of the redundancy allocation problem. This method transforms
the constrained optimization problem into an unconstrained one by

Redundancy allocation, Genetic penalizing the objective function corresponding to the infeasible

algorithm. solution and then explain the model by deriving the required algorithm to
obtain an integer solution along with two numerical example. To convert the
above problem to an unconstrained maximization problem, a large
negative value (say, —M) is blindly assigned to the objective function for
the infeasible solution. Results: This paper explains the use of GA to analyze this
problem. The GA was examined on two problems and compared with the
corresponding results from DP and B&B. GA, as powerful and broadly
applicable stochastic search and optimization technique, is the most widely known
type of evolutionary computational methods. GA maintains a population of
chromosomes. Each chromosome represents a potential solution to the problem
at hand and is evaluated to give some measure of its fitness. A new population
is formed by selecting the more fitable chromosomes from the parent and
offspring populations. After several generations, the algorithm converges to
the best chromosome, which represents an optimal or sub-optimal solutions to the
problem. One of the distinguishing features of GA is to work with a population of
candidate solutions. Conclusion: since GA’s concept and theory are simple, and
GA’s ability to search optimal solution is excellent; Therefore, GA approach
can be applied to many engineering optimization problems as well as
decision making problems in various fields.
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INTRODUCTION

Chern (Chern,M.S,1992) has proved that even the simplest redundancy allocation problems, a series system
with one constraint or a series system with identical components two constraints, are NP-hard. Due to its difficulty,
various approaches, such as heuristics and enumerations, have been considered for solving redundancy allocation
problems (Kuo, W, Prasad, V.R, Tillman, F.A, Hwang, C.L , 2001).

Various reliability (Barlow, R.E., Proschan, F., 1975) optimization approaches have been
suggested in the past three decades (Tillman, FA., Hwang, C.L. and Kuo, W, 1977). Stochastic
programming models for general redundancy-optimization problems have been studied by Zhao et al
(Zhao, R. and Liu, B., 2003). Stochastic programming models pose as reformulations or extensions of
reliability optimization problems with chance parameters. This paper deals with the chance constraints
reliability stochastic optimization problem. The purpose is to maximize system reliability for the given
chance constraints. A method is explained to determine optimal solutions to an n-stage series system
with m chance constraints of the redundancy allocation problem. Various cases of stochastic with
known distributions, such as uniform, normal when the resource variables are random, have been
investigated. Once the real number solution is obtained using the technique of chance constraints, the
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branch-and-bound (B&B) method, dynamic programming (DP) method, genetic algorithm (GA)
method is used to obtain the integer solution. We explain this approach for two 4-stage series system
with two chance constraints.

In this work, we deal with the stochastic integer programming problem for n-stage series system
with m chance constraints. Firs we change these problems to constrained equivalent ones and then use
optimization method.

Methodology:
Stochastic optimization: n-stage series system with m chance constraints:

The chance constrained optimization problem for a n-stage series system with m chance
constraints can be formulated as

Max Ry(x) = IT}_.[ 1-(1-r) %) €))

s.t

Pr (gi(x) =¢) = 1-q;, i=1,2,..,m

Xj:_-"l,j=1,2,...,n.

where resource vector ¢;is random; Rs is the reliability of the system; rjis reliability of components
J; Xj isthe number of components used at stage j; gj(x) is the chance constrainti; cj is the amount of
resource i available (random), and a;j is the level of significance.

Definition 1: A random variable X is said to have a uniform distribution if its probability
density function is given by
' a=<=x = b

b-a

f(X) =
0 otherwise
When a random variable X is uniformly distributed, we shall express it as X ~ U (a, b).

Definition 2: A random variable X is said to have a normal distribution with parameters
(mean) and =2 (variance) if its probability density function is given by
. " 2po
fX; 1, 0)= 77 exp(-; ()
—w X, T

When a random variable X is normally distributed with meang and standard deviation a2,

we shall express it as X~ N(x, &2).

Case 1. cj is uniformly distributed:
Let cj: U(lj, uj), the constraint in system (1) is equivalent to gj(x) < 1j, where pj = 1 — oj,
i ir
[.'I =) =Bi.ie. 1 =oajuj + Pjli. Hence, the deterministic equivalent of system (1) s

T

Max Ry(x) = IT}_.[ 1-(1-r;) %)

st gi(x) =1, i=1,2,..m
xz1,j=1.2,....n.

Case 2. cj is normally distributed:

Let ¢j: N(u ¢, o°%; ) where p ¢ and o°; are mean and variance of the normal random variable i
Using the ith chance constraintof the system (1), restate the chance constraint as

Prici=gi(x)) =1-0j,i =1, 2,.,m,so can be

written as gj (X) < u o+ ¢, @, Where ej is the value of the standard normal differ for which
@ (e)=r;.

9(2) =7 Il exp(+;) dt

Hence, the deterministic equivalent of system (1) is

Max Ry(x) = IT7_.[ 1-(1-r;)%)

st
gi(X) < i gt e g i=1,2,.,m
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Xj:: 1, j:1,2,...,1’1.

Different Stochastic Optimization Approaches:

The most used global optimization method in redundancy allocation problems is dynamic
programming. Dynamic programming solutions to the redundancy allocation problem are presented in
Bellman and Dreyfus (Bellman, R.E., Dreyfus, E.,1962), Fyffe, Hines and Lee (Fyffe, D. E., Hines, W. W.,
Lee, N. K, 1968) and Nakagawa and Miyazaki (Nakagawa, Y, Miyazaki, S, 1981). The Fyffe, Hines and
Lee formulation uses a Lagrangian multiplier (A) within the objective function to reduce the number of
problem constraints to one, and alternatively, the Nakagawa and Miyazaki formulation uses a surrogate
constraint to combine the constraints into one. The implementation of dynamic programming, however,
is limited by the number of constraints and the system structures it can be applied to. For a system
which has more than two constraints, the computational complexity of dynamic programming
increases exponentially. Dynamic programming is still not applicable to nonseparable systems such
as reliability optimization problems with complex structures.

Branch-and-Bound Technique:

Due to their flexibility and their optimality properties, branch-and-bound methods have been
extensively used in mathematical programming (Ha,C, Kuo,W, 2006). The general branch-and-bound
method for maximizing integer nonlinear programming (INLP) problems is based on the following
procedures (Sun, X, Li Duan,D,2002):

(1) to find a feasible solution and set the current optimum as the value of the initial feasible solution;

(2) if there is no unsolved sub-problem, terminate the procedure;

(3) branch into sub-problem where a decision a variable is fixed or bounded;

(4) apply relaxation for each sub-problem and solve the problem, then, update the upper bound as the
maximum value of the solutions;

(5) fathom this tree node if the upper bound is less than the current optimum;

(6) if the upper bound is feasible, update the current optimal solution and go to the next tree node; otherwise
branch into the sub-problems again.

Genetic Algorithm Implementation:

A GA is a stochastic optimization technique patterned after natural selection in biological evolution as
initially described by Holland (Holland, J., 1975). Genetic algorithms produce a complete population of
answering points. Each point is tested separately and to establish new populations, including modified points,
existing points merits could be tested (Dehini,R, Ferdi,B,and Bekkouche,B,2012, Farshad Kyoomarsi,2008).
The equivalent deterministic constraint optimization problem for a series system is a non-linear constrained
integer programming problem. During the last few decades, several methods were proposed for handling
constraints by GA (Deb, K., 2000, Sakawa,M,2002, F Kiyoumarsi,2010). Each of these methods has some
advantages and disadvantages. Penalty function methods are the most popular methods used in GAs for
constrained optimization problems. This method transforms the constrained optimization problem into an
unconstrained one by penalizing the objective function corresponding to the infeasible solution and then
explain the model by deriving the required algorithm to obtain an integer solution along with two numerical
example. To convert the above problem to an unconstrained maximization problem, a large negative value
(say, —M) which is blindly assigned to the objective function for the infeasible solution. In this case the reduced
problem is as follows:

Max Rs(X) =R (X) +0(x)

where

0 if x S

0(x) =
—R(x) + (-M) if X2 S

This is a non-linear unconstrained integer programming problem and S be the set of feasible solutions.

Solution procedure:

For the purpose of solving the nonlinear maximization problem, we have developed an advanced GA for
integer variables with fitness function, tournament selection, uniform crossover, uniform mutation and elitism.
The different steps of this algorithm are described as follows:

Algorithm

Stepl: Initialize the parameters of Genetic Algorithm.
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Step2: t = 0 (t represents the number of current generation).

Step3: Initialize P (t) (P (t) represents the population at t -th generation).

Step4: Evaluate P (t).

Step5: Find the best result from P (t).

Step6:t=t+1.

Step7: If (t > maximum generation number) go to step-14.

Step8: Select P (t) from P (t—1) by tournament selection process

Step9: Alter P (t) by crossover, mutation and elitism process.

Step10: Evaluate P (t).

Stepl1: Find the best result from P (t).

Step12: Compare the best results of P (t) and P (t — 1) and accept the better one.

Stepl3: Go to Step-6.

Step14: Print the result.

Stepl5: stop.

For implementing the above GA in solving the reliability optimization problems, the following components
are to be considered.

GA Parameters

Chromosome representation

Initialization of population

Evaluation of fitness function

Selection process

e  Genetic operators (crossover, mutation and elitism)

In the applications of GA, there are different types of chromosome, viz. Among these representations, real
coding representation is very popular as this type of chromosome representation looks like a vector. As our
proposed problem is non-linear containing n discrete variables, an integer decimal number representation is
used here. An integer row matrix Vj = (Vj., Vjz, ..., V jn) is used as a chromosome where the components Vj;
, V2, ..., Vj represent the decision variables, x; , X, , . . ., X, of the problem, respectively. In this present
work, for each component of the chromosome, a random value is selected from the discrete set of values within
the bounds. In order to check the quality of each potential solution from the population of potential
solutions obtained by chromosome representation, the fitness value for each chromosome needs to be
calculated. The first operator of GA is the selection operator. Here, we have used the well known tournament
selection process of size two with replacement. In this process, it selects the better chromosome/individual from
randomly selected two chromosomes/individuals based on the following assumptions:

(1) When both the chromosomes/individuals are feasible then the one with better fitness value is selected.

(2) When one chromosome/individual is feasible and another is infeasible then the feasible one is selected.

(3) When both the chromosomes/individuals are infeasible with unequal constraint violation, then the
chromosome with less constraint violation is selected.

(4) When both the chromosomes/individuals are infeasible with equal constraint violation, then any one
chromosome/individual is selected.

After selection of chromosomes, the crossover operation is applied. Here the crossover operation is done in
the following manner:

Step-1: Find the integral value of (p_cros* p_size) and store itin N .

Step-2: Select the chromosomes Vk and Vi randomly among the population for crossover. Step-3: The
components Vg0 and V;;0(j=1, 2, ..., n) of two offspring will be created by

ij = ij + g & Vij = Vij -0 if Vij} ij

or ij =ij'g & Vij :Vij+g

where g is a random integer number between 0 and [Vkj — Vij |.

Step-4: Repeat Step-2 and Step-3 for N /2 times.

After crossover of chromosomes, the uniform mutation operation is applied. If the element (gene) Vik of
chromosome Vi is selected for mutation and domain of Vik is (lik , uik ), then the reduced value of Vik is given

by
Vie '=Vi +4 (Uuik— Vi) ifarandom digit is O
Vie =Vie-Yvi—1)  ifarandom digit is 1
wherek € {1, 2,...,n}and 4 (y) returns a value in the range (0, y).
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In order to preserve the best solution created in previous generations, a process called elitism process is
considered.

The termination criterion is a rule for which the algorithm is going to stop. For this purpose any one of the
following three is considered the termination criterion.

1. The best individual does not improve over the specified generations.

2. The number of generations reaches maximum number of generations.

3. The total improvement of last certain number of best solutions is less than a pre-assigned small
positive number.

In this work we have used the first one as the termination criterion.

RESULTS AND DISCUSSION

To illustrate our proposed GA based on penalty technique for solving the reliability stochastic optimization
problem, we have considered two numerical examples. Each example has been formulated using Case 1. In this
computation, the following values of GA parameters are used: p_size = 90, p_cross = 0.70, p_mute = 0.10,
max_gen = 90.

Example 1:
A four-stage system with chance constraints is formulated as a pure stochastic integer programming
problem using the data given in Table 1.

_IT x
Max Ry(x) =" 1-(1-r)%)
s.t
. . -
Pr(E-' = ijxj5 ci)=l-ai,i=1,2
Table 1: Data for Example 1.
Stage, j 1 2 3 4 Auvailable resource
rj 0.75 0.80 0.75 0.85 li Ui 0
alj 15 33 3.2 4.4 Ci 50 60 0.1
a2j 4.0 5.0 7.0 9.0 C, 110 140 0.15

Example 2:
A four stage system with chance constraints is formulated as a pure stochastic integer programming
problem using the data given in Table 2.

NS 1 N e
ax Ry(x) =" -(1-n)y)
s.t
f_.a . .
Pr(E-' = ijxjE ci)Z1-ai,i=1,2
Table 2: Data for Example 2.
Stage, j 1 2 3 4 Available resource
rj 0.76 0.81 0.78 0.86 li Ui i
alj 15 3.3 3.2 44 C. 50 60 0.1
a2j 4.0 5.0 7.0 9.0 C, 110 140 0.15
Table 3: Best numerical results for examples.
Example Xj’s Best reliability CPU(GA) CPU(DP) CPU(B&B)
1 (5,4,5,3) 0.993088 0.001 0.047 0.038
2 (5,4,5,3) 0.994650 0.001 0.060 0.042

To study the performance of our developed GA, sensitivity analyses have been done graphically for second
example on the system reliability with respect to GA parameters separately keeping the other parameters at their
original values. These are shown in Figs. 1-4.
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Fig. 1: System reliability vs. p_size..
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Fig. 3: System reliability vs. p_mute.
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Fig. 4: System reliability vs. max_gen.

Conclusion:

The redundancy allocation problem has been solved using DP and B&B models. There are distinct
differences between these various optimization approaches, and different classes of the problem are suited to
one particular model. This paper explains the use of GA to analyze this problem. The GA was examined on two
problems and compared with the corresponding results from DP and B&B.

GA, as powerful and broadly applicable stochastic search and optimization technique, is the most widely
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known type of evolutionary computational methods. GA maintains a population of chromosomes. Each
chromosome represents a potential solution to the problem at hand and is evaluated to give some measure of
its fitness. A new population is formed by selecting the more fitable chromosomes from the parent and
offspring populations. After several generations, the algorithm converges to the best chromosome, which
represents an optimal or sub-optimal solutions to the problem. One of the distinguishing features of GA is to
work with a population of candidate solutions. since GA’s concept and theory are simple, and GA’s ability to
search optimal solution is excellent; Therefore, GA approach can be applied to many engineering optimization
problems as well as decision making problems in various fields.
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