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 Background: Various reliability (Barlow, R.E., Proschan, F., 1975) optimization 

approaches    have   been suggested in the past three decades (Tillman, F .A.,Hwang, 

C.L. and Kuo, W, 1977). Stochastic programming models for general redundancy-
optimization problems have been   studied by Zhao et al (Zhao, R. and Liu, B., 2003).  

Stochastic   programming models pose as reformulations or extensions of reliability 

optimization problems with chance   parameters Objective: This paper aims to 
maximize system reliability for the given chance constraints. To achieve this end, a 

method is explained to determine optimal solutions to an n-stage series system with m 

chance constraints of the  redundancy allocation problem. This method transforms 
the constrained optimization problem into an unconstrained one by  

penalizing the objective function corresponding to the infeasible 

solution and then   explain the model by deriving the required algorithm to 
obtain an integer solution along with two numerical example.  To convert the 

above problem to an unconstrained maximization problem, a large 

negative value (say, −M) is blindly assigned to  the objective function for 
the infeasible solution. Results: This paper explains the use of GA to analyze this 

problem.  The GA was examined on two problems and compared with the 

corresponding results from DP and B&B.  GA,   as powerful   and   broadly   
applicable   stochastic search and optimization technique, is the most widely known 

type of evolutionary computational methods. GA maintains a population of 

chromosomes. Each chromosome  represents  a potential solution  to  the problem  
at  hand  and  is evaluated  to  give some measure  of its fitness. A  new  population 

is formed  by  selecting  the  more  f i tab le   chromosomes   from  the parent   and  
offspring  populations.  After  several  generations,  the  algorithm   converges  to  

the  best  chromosome, which represents an optimal or sub-optimal solutions  to the 

problem. One of the distinguishing features of GA is to work with a population of 
candidate solutions. Conclusion: since GA’s concept and theory   are  simple,  and  

GA’s  ability  to  search  optimal solution  is excellent; Therefore, GA approach 

can be applied to many engineering   optimization  problems   as  well  as  
decision making problems in various fields.  
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INTRODUCTION 

 

Chern (Chern,M.S,1992) has proved that even the simplest redundancy allocation problems, a series system 

with one constraint or a series system with  identical components two constraints, are NP-hard. Due to its difficulty, 

various approaches, such as heuristics and enumerations, have been considered for solving redundancy allocation 

problems (Kuo, W, Prasad, V.R, Tillman, F.A, Hwang, C.L , 2001). 

Various reliability (Barlow, R.E., Proschan, F., 1975) optimization approaches have been 

suggested in the past three decades (Tillman, F.A., Hwang, C.L. and Kuo, W, 1977). Stochastic 

programming models for general redundancy-optimization problems have been studied by Zhao et al 

(Zhao, R. and Liu, B., 2003).  Stochastic   programming models pose as reformulations or extensions of 

reliability optimization problems with chance parameters. This paper deals with the chance constraints 

reliability stochastic optimization problem. The purpose is to maximize system reliability for the given 

chance constraints. A method is explained to determine optimal solutions to an n-stage series system 

with m chance constraints of the redundancy allocation problem. Various cases of stochastic with 

known distributions, such as uniform, normal when the resource variables are random, have been 

investigated. Once the real number solution is obtained using the technique of chance constraints, the 
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branch-and-bound (B&B) method, dynamic programming (DP) method, genetic algorithm (GA) 

method is used to obtain the integer solution. We explain this approach for two 4-stage series system 

with two chance constraints. 

In this work, we deal with the stochastic integer programming problem for n-stage series system 

with m chance constraints. Firs we change these problems to constrained equivalent ones and then use 

optimization method. 

 

Methodology: 

Stochastic optimization: n-stage series system with m chance constraints: 

The chance constrained optimization problem for a n-stage series system with m chance 

constraints can be formulated as 

Max Rs(x) =  1-(1-rj) 
x

j)                     (1) 

s.t   

Pr (gi(x) ci)  1-αi, i=1,2,..,m 

xj 1, j=1,2,…,n. 

where resource vector ci is random; Rs is the reliability of the  system; rj is reliability of components 

j;  xj  is the number of components used  at stage j;  gi (x) is the chance constraint i;  ci is the amount of 

resource i available (random), and  αi is the level of significance. 

 Definition 1: A random variable X is said to   have a uniform distribution if its   probability 

density function is given by  

                        a  

f (X) =  

0        otherwise 

When a random variable X is uniformly distributed, we shall express it as X U (a, b). 

Definition 2: A random variable X is said to   have a normal distribution with parameters  

(mean) and 2(variance) if its probability density function is given by 

f(X; μ, σ)= exp(-  ( )
2
);            

    ,  

When a random variable X is normally distributed with mean  and standard deviation 
2
, 

we shall express it as X  N( ,
2
). 

 

Case 1.  ci is uniformly distributed: 

Let ci : U(li , ui), the  constraint in system  (1) is equivalent to  gi (x) ≤ τi , where βi = 1 – αi ,  

  ) = βi, i.e.   τi = αi ui  + βi li . Hence, the deterministic equivalent of system  (1) is 

 

Max Rs(x) =  1-(1-rj) 
x

j) 

                 

s.t   gi (x) ≤ τi, i=1,2,..,m 

       xj 1, j=1,2,…,n. 

 

Case 2.  ci is normally distributed: 

Let ci : N(  ci ,
2

ci ) where  ci and 
2

ci are mean and variance of the normal random variable ci 

Using the ith chance constraint of the system  (1), restate the chance  constraint as 

 Pr(ci ≥ gi (x)) ≥ 1 – αi ,i = 1, 2,..., m, so can be   

written as gi (x) ≤  ci+ ei ci 
where ei  is the value of the standard normal differ for which 

(ei)= i. 

(z) =  (-  ) dt 

Hence, the deterministic equivalent of system (1) is 

Max Rs(x) =  1-(1-rj)
x

j) 

                  

s.t 

gi (x) ≤  ci+ ei ci, i=1,2,..,m 
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xj 1, j=1,2,…,n. 

 

Different Stochastic Optimization Approaches: 

The most used global optimization method in redundancy allocation problems is dynamic 

programming. Dynamic programming solutions to the redundancy allocation problem are presented in 

Bellman and Dreyfus (Bellman, R.E., Dreyfus, E.,1962), Fyffe, Hines and Lee (Fyffe, D. E., Hines, W. W., 

Lee, N. K, 1968) and Nakagawa and Miyazaki (Nakagawa, Y, Miyazaki, S, 1981). The Fyffe, Hines   and   

Lee   formulation   uses   a   Lagrangian multiplier (λ) within the objective function to reduce the number of 

problem constraints to one, and alternatively, the Nakagawa and Miyazaki formulation uses a surrogate 

constraint to combine the constraints into one.  The implementation of dynamic programming, however, 

is limited by the number of constraints and the system structures it can be applied to. For a system 

which has more than two constraints, the computational complexity of dynamic programming 

increases exponentially. Dynamic programming is still not applicable to nonseparable systems such 

as reliability optimization problems with complex structures. 

 

Branch-and-Bound Technique: 

Due to their flexibility and their optimality properties, branch-and-bound methods have been 

extensively used in mathematical programming (Ha,C, Kuo,W, 2006). The general branch-and-bound 

method for maximizing integer nonlinear programming (INLP) problems is based on the following 

procedures (Sun, X, Li Duan,D,2002): 

(1) to f i n d  a feasible solution and set the current optimum as the value of the initial feasible solution;  

(2) if there is no unsolved sub-problem, terminate the procedure; 
(3) branch into sub-problem  where a decision a variable is fixed or bounded;  

(4) apply relaxation for each sub-problem and solve the problem, then,  update the upper bound as the 

maximum value of the solutions; 
(5) fathom this tree node if the upper bound is less than the current   optimum; 

(6) if the upper bound is feasible, update the current optimal solution and go to the next tree node;  otherwise 

branch into the sub-problems  again. 

 

Genetic Algorithm Implementation: 

A GA is a stochastic optimization technique patterned after   natural   selection  in biological evolution as 

initially described by Holland (Holland, J., 1975). Genetic algorithms produce a complete population of 

answering points. Each point is tested separately and to establish new populations, including   modified  points,  

existing  points  merits could  be tested (Dehini,R, Ferdi,B,and Bekkouche,B,2012, Farshad Kyoomarsi,2008). 

The equivalent deterministic constraint optimization problem for a series system is a non-linear constrained 

integer programming problem. During the last few decades, several methods were proposed for handling 

constraints by GA (Deb, K., 2000, Sakawa,M,2002, F Kiyoumarsi,2010). Each of these methods has some 

advantages and disadvantages. Penalty function methods are the most popular methods used in GAs for 

constrained optimization problems. This method transforms the constrained optimization problem into an 

unconstrained one by  penalizing the objective function corresponding to the infeasible solution and then   

explain the model by deriving the required algorithm to obtain an integer solution along with two numerical 

example.  To convert the above problem to an unconstrained maximization problem, a large negative value 

(say, −M) which is blindly assigned to  the objective function for the infeasible solution. In this case the reduced 

problem is as follows: 

Max   Rs(x) = R (x) + θ (x) 

where      

                       0                     if x  S   

 

θ (x) =  

                   −R(x) + (-M)            if x  S   

 

 

This is a non-linear unconstrained integer programming problem and S be the set of feasible solutions.  

Solution procedure: 

For the purpose of solving the nonlinear maximization problem, we have developed an advanced GA for 

integer variables with fitness function, tournament selection, uniform crossover, uniform mutation and elitism. 

The different steps of this algorithm are described as follows: 

Algorithm 

Step1: Initialize the parameters of Genetic Algorithm.  
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Step2: t = 0 (t represents the number of current generation). 

Step3: Initialize P (t) (P (t) represents the population at t -th generation).  

Step4: Evaluate P (t). 

Step5: Find the best result from P (t). 

Step6: t = t + 1. 

Step7: If (t > maximum generation number) go to step-14. 

Step8: Select P (t) from P (t−1) by tournament selection process 

Step9: Alter P (t) by crossover, mutation and elitism process. 

Step10: Evaluate P (t). 

Step11: Find the best result from P (t). 

Step12: Compare the best results of P (t) and P (t − 1) and accept the better one. 

Step13: Go to Step-6. 

Step14: Print the result. 

Step15: stop. 

For implementing the above GA in solving the reliability optimization problems, the following components 

are to be considered. 

 

 GA Parameters 

 Chromosome representation 

 Initialization of population 

 Evaluation of fitness function 

 Selection process 

 Genetic operators (crossover, mutation and elitism) 

 

In the applications of GA, there are different types of chromosome, viz. Among these representations, real   

coding representation is very popular as this type of chromosome representation looks like a vector. As our 

proposed problem is non-linear containing n discrete variables, an integer decimal number representation is 

used here. An integer row matrix Vj = (Vj1 , Vj2 , . . . , V jn ) is used as a chromosome where the components Vj1 

, Vj2 , . . . , Vjn represent the decision variables, x1 , x2 , . . . , xn  of the problem, respectively. In this present 

work, for each component of the chromosome, a random value is selected from the discrete set of values within 

the bounds. In  order to  check the  quality of  each potential  solution from the  population of  potential  

solutions obtained  by chromosome representation, the fitness value for  each chromosome needs to  be  

calculated. The first operator of GA is the selection operator. Here, we have used the well known tournament 

selection process of size two with replacement. In this process, it selects the better chromosome/individual from 

randomly selected two chromosomes/individuals based on the following assumptions: 

 (1) When both the chromosomes/individuals are feasible then the one with better fitness value is selected.  

(2)  When one chromosome/individual is feasible and another is infeasible then the feasible one is selected. 

(3)  When both the chromosomes/individuals are infeasible with unequal constraint violation, then the 

chromosome with less constraint violation is selected. 

 (4)  When both the chromosomes/individuals are infeasible with equal constraint violation, then any one 

chromosome/individual is selected. 

After selection of chromosomes, the crossover operation is applied. Here the crossover operation is done in 

the following manner: 

Step-1: Find the integral value of (p_cros* p_size) and store it in N . 

Step-2: Select the chromosomes Vk and Vi randomly among the population for crossover. Step-3: The 

components Vkj 0    and Vij 0 (j = 1, 2,  . . . , n) of two offspring will  be created by 

 

Vkj 


= Vkj + g    &    Vij   


= Vij - g     if  Vij  Vkj 

or   Vkj 


= Vkj - g   &    Vij  


= Vij + g    

where   g is a random integer number between 0 and |Vkj  − Vij |. 

Step-4: Repeat Step-2 and Step-3 for N /2 times. 

After crossover of chromosomes, the uniform mutation operation is applied. If the element (gene) Vik of 

chromosome Vi is selected for mutation and domain of Vik is (lik , uik ), then the reduced value of Vik is given 

by 

 

Vik   


=Vik +  ( uik – vik)    if a random digit is 0 

Vik   


=Vik - (vik – lik)       if a random digit is 1 

where k ∈ {1, 2, . . . , n} and  (y) returns a value in the range (0, y). 
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In order to preserve the best solution created in previous generations, a process called elitism process is 

considered. 

The termination criterion is a rule for which the algorithm is going to stop. For this purpose any one of the 

following three is considered the termination criterion. 

1. The best individual does not improve over  the specified generations. 

2. The number of generations reaches maximum number of generations. 

3. The total improvement of last  certain number of best solutions is less than a pre-assigned small 

positive number. 

In this work we have used the first one as the termination criterion. 

 

RESULTS AND DISCUSSION 

 

To illustrate our proposed GA based on penalty technique for solving the reliability stochastic optimization 

problem, we have considered two numerical examples. Each example has been formulated using Case 1. In this 

computation, the following values of GA parameters are used: p_size = 90,   p_cross = 0.70,   p_mute = 0.10,  

max_gen = 90. 

 

Example 1: 

A four-stage system with chance constraints is formulated as a pure stochastic integer programming 

problem using the data given in Table 1. 

Max Rs(x) =  1-(1-rj)
x

j) 

s.t 

Pr( ijxj  ci) 1– αi ,i = 1, 2 

 
Table 1: Data for Example 1. 

Stage, j 1 2 3 4 Available resource 

rj 0.75 0.80 0.75 0.85  li ui αi 

a1j 1.5 3.3 3.2 4.4 C1 50 60 0.1 

a2j 4.0 5.0 7.0 9.0 C2 110 140 0.15 

 

Example 2: 

A four stage system with chance constraints is formulated as a pure stochastic integer programming 

problem using the data given in Table 2. 

Max Rs(x) =  1-(1-rj)
x

j) 

                 

s.t 

Pr( ijxj  ci) 1– αi ,i = 1, 2 

 
Table 2: Data for Example 2. 

Stage, j 1 2 3 4 Available resource 

rj 0.76 0.81 0.78 0.86  li ui αi 

a1j 1.5 3.3 3.2 4.4 C1 50 60 0.1 

a2j 4.0 5.0 7.0 9.0 C2 110 140 0.15 

 
Table 3: Best numerical results for examples. 

 

Example 

 

xj ’s 

 

Best reliability 

 

CPU(GA) 

 

CPU(DP) 

 

CPU(B&B) 

 
1 

 
(5, 4, 5, 3) 

 
0.993088 

 
0.001 

 
0.047 

 
0.038 

 

2 

 

(5, 4, 5, 3) 

 

0.994650 

 

0.001 

 

0.060 

 

0.042 

 

To study the performance of our developed GA, sensitivity analyses have been done graphically for second 

example on the system reliability with respect to GA parameters separately keeping the other parameters at their 

original values. These are   shown in Figs. 1-4. 
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Fig. 1: System reliability vs. p_size.. 

 

 
Fig. 2: System reliability vs. p_cross.. 

 

 
 

Fig. 3: System reliability vs. p_mute. 

 
 

Fig. 4: System reliability vs. max_gen. 

 

Conclusion: 

The redundancy allocation problem has been solved using DP and B&B models. There are distinct 

differences between these various optimization approaches, and  different classes of the  problem  are suited to 

one particular model. This paper explains the use of GA to analyze this problem.  The GA was examined on two 

problems and compared with the corresponding results from DP and B&B.   

GA, as powerful and broadly applicable stochastic search and optimization technique, is the most widely 
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known type of evolutionary computational methods. GA maintains a population of chromosomes. Each 

chromosome  represents  a potential solution to the problem at hand and  is evaluated to give some measure  of 

its fitness. A  new  population is formed by  selecting  the  more fitable chromosomes from the parent  and 

offspring populations. After several generations, the algorithm converges to the best  chromosome, which 

represents an optimal or sub-optimal solutions  to the problem. One of the distinguishing features of GA is to 

work with a population of candidate solutions. since GA’s concept and theory are simple, and  GA’s ability to 

search optimal solution is excellent; Therefore, GA approach can be applied to many engineering optimization 

problems as well as decision making problems in various fields.  
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