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 In this paper, are provided a new set in Banach spaces. Using McShane integral, new 

concepts of convexity are introduced in Banach spaces. These results are generalized 

concepts that Jian-Yong Wang and Yu-Mei Ma were expressed. Convex sets and 
extreme points have a very important role in optimal control problems.By way of 

McShane integral of vector-valued functions, the McShane integral convexity of sets 

and the concept of McShane integral extreme points of sets are introduced in banach 

spaces. 
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INTRODUCTION 

 

The theory of convex sets and extreme points are a vibrant and classical field of modern mathematics with 

rich applications in economics and optimization. It is therefore necessary to extend this branch of mathematics. 

In  recent years optimization problems concepts quickly expanded. For example in 2004 Yong Wang and Yu-

Mei Ma  introduced the concept of integral convex sets and integral extreme points and proved some theorems 

for these concepts (Wang and Ya, 2004). In the present paper we focus on a generalization of the notion of 

integral convexity. By using, instead of Bochner integral, a more general vector integral, that of McShane, we 

obtain some results on integral convex sets and  integral-extreme points of subsets of a Banach spaces. To obtain 

these results some preliminary results and definitions were referred. However for more details see also (Diestel 

and Uhl, 1977; Gordon ,1990; Schwabik and Guoju, 2005; Wang and Ya, 2004). 

 

Preliminaries: 

First we deal with functions which take values in Banach spaces. For such functions we define the various 

notions of measurability and different integrals corresponding to them. Let X  be a Banach space,  X∗ its 

topological dual, and  ([0, 1],Σ,μ)  the unit interval provided with the ζ -algebra of  Lebesgue  measurable sets 

and  with the Lebesgue measure. 

 

Definition 2.1: 

A function s: [0,1]⟶X is called simple if there is a finite sequence Em∈Σ , m = 1,..., p such that 

Em∩En=∅ for m≠n and [0,1]= Em
p

m=1  where  s t =y
m
∈X for t∈Em  ,m=1,..., p. Denote by J(μ,X )=J the set of 

all simple functions defined on [0, 1] . 

 

Definition 2.2: 

A function f :[0, 1]⟶ X  is called measurable if there exists a sequence  sn , sn∈ J,n ∈ N with  

limn→∞ sn t -f(t) X
=0   for almost all t ∈ [0, 1] . 

 

Definition 2.3: 

A function  f:[0, 1] ⟶ X  is called weakly measurable if for each x*∈ X* the real function  x*(f):[0,1]⟶ R  

is measurable. 
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Remark 2.1: 

It is a simple task to define the integral of a simple function. Assume that s : I ⟶ X  is a simple function 

given by Definition 2.1. 

Define the integral of s: I ⟶ X  as   s dμ= s Em .μ Em =
p

m=1[0,1]
 y

m
.μ Em 

p

m=1  . If A ∈Σ ands ∈ J then 

define   sA t =s t .χ
A
 t =  

s t          t∈A

        0             t∉A      
 . It is easy to see that the function fA is again simple and we 

set  s dμ
A

=  sAdμ
[0,1]

  . 

 

Definition 2.4: 

A measurable function f:[0,1]⟶ X is called Bochner integrable if there exists a sequence of simple function 

 sn  such that limn→∞   sn-f 
[0,1]

dμ=0. In this case,  fdμ
A

 is defined for each A ∈Σ by  f
A

du= limn→∞  snA
dμ  

where   snA
dμ is defined in the remark 2.1. 

The value  fdμ
A

 is called bochner integral of function f over A and If necessary the more detailed notation 

(β)  fdμ
A

  will be used for this concept of integral. The set of functions β is called the set of  Bochner 

integrable functions. 

The next  theorem gives a necessary and sufficent condition for the Bochner integrability of a function 

f : [0, 1] ⟶ X . 

 

Theorem 2.1: 

A measurable function f : [0, 1] ⟶ X  is Bochner integrable if and only if the function t⟶ f(t) X is 

Lebesgue integrable (i.e.,  f(·) X∈L1(Ω)) . 

 

Definition: 

Let a compact interval ⊂ R .  A pair (t, J ) of a point t ∈ R and a compact interval J ⊂R is called a tagged 

interval, t is the tag of  J .Two compact intervals J,L ⊂ R are called non-overlapping If  J∘ ∩ L∘ = ∅   (J∘, L∘ 

denote the interiors of  J,L, respectively).A finite collection { ( tj,Ij  ) ,j = 1, . . . , p} of pairwise non-overlapping 

tagged intervals is called an M-system in I  if  Ij ⊂ I   for j = 1,. . . ,p. An M-system { ( tj,Ij  ) ,j = 1, . . . , p}  in  I  

is called an M- partition of the interval I  if    Ij
p

i=1 =I . 

 

Definition 2.6: 

Let a compact interval ⊂ R. Given a positive function δ : I → (0, +∞) called a gauge on I , a tagged interval 

(t, J )  is said to be δ -fine if  J⊂B(t,δ ( t ) ) ,where B(t,δ ( t ) )  is  the ball in R centered at t  with the radius  

δ ( t ) .M - systems or partitions are called δ -fine if all the tagged intervals   tj,Ij ,j = 1, . . . , p   are δ -fine with 

respect to the gauge δ. 

 

Definition 2.7: 

Assume that a function f : [0, 1] ⟶ X  is given.f is McShane integrable and  J ∈ X  is its McShane integral 

if for every  ε > 0  there exists a gauge  δ :[0,1] → (0, +∞)  such that for every δ -fine M-partition 

{ ( ti,Ii  ) ,i = 1, . . . , p} of [0,1] the inequality    f ti .μ Ii 
p

i=1 -J 
X

<ε  holds .We  denote  J=(M) fdμ
[0,1]

  and  

M denotes the set of all McShane integrable functions.In the following we provide some properties of the 

McShane integral. 

 

Theorem 2.2 (Schwabik and Guoju, 2005): 

If  f : [0, 1] ⟶ X  as McShane integrable then for every ε > 0    there is an η>0  such that if   E ⊂[0,1]   is  

measurable with  μ(E) < η then   (M) f dμ
E

 
X

≤ε . 

 

Theorem 2.3(Schwabik and Guoju, 2005): 

If  f : [0, 1] ⟶ X  as McShane integrable with (M) fdμ ∈X
[0,1]

 then for every  x* ∈ X* the real function  

x* (f) : [0, 1] ⟶ R  is McShane integrable and (M) x* (f)dμ=x*((M) fdμ 
[0,1]

)
[0,1]

 . 

 

Theorem 2.4(Schwabik and Guoju, 2005): 

If f : [0, 1] ⟶ X is Bochner integrable then f is McShane integrable, i.e. β ⊂ M and we have  

(β) fdμ=(M) fdμ 
[0,1][0,1]

. 
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Remark 2.2: 

Any McShane integrable function is Pettis integrable (see [6]) . However as shown in [1] every Pettis 

integrable function is Henstoch-Kurzweil-Pettis integrable .So if  f  is McShane integrable function then it is 

Henstoch-Kurzweil-Pettis integrable and  tow integrals are coincide.since the mean value theorem is true for 

Henstoch-Kurzweil-Pettis integrable function (see [1]) then also is used to McShane integrable function .Now 

we express the result in the next theorem. 

 

Theorem 2.5: 

Let  f : [0, 1] ⟶ X be a McShane integrable function and E ⊂[0,1]   is  measurable with  μ E >0 then 
1

μ(E)
(M) fdμ ∈co (f E )

E
 .The following concepts were introduced in (Wang and Ya, 2004): 

 

Definition 2.7: 

A ⊂ X is said to be integral-convex (shortly,  - convex) if everyf : [0, 1] ⟶ X, Bochner integrable such 

that  f (t) ∈ A  a.e. satisfies (β)  f dμ ∈A
[0,1]

 . 

 

Remark 2.3.(Wang and Ya, 2004): 

For any A ⊂ X , there is a smallest (closed)  - convex  set containing A, namely the intersection of all 

(closed)  − convex sets containing  A, which is called the (closed)  - convex  hull of  A and denoted by  

co A (respectively, co  A ).We have: coA⊂co A⊂co  A⊂co A             (*) 

It follows that from (*) in  Remark 2.3 any  - convex  subset  X is convex. 

 

Definition 2.8: 

A subset B ⊂ A∈2X is called an  − extremal  subset of A if  for any f : [0, 1] ⟶ X  Bochner integrable 

one-side-continuous with f (t) ∈  A  a.e. and (β)  f dμ ∈B
[0,1]

  implies f ([0, 1]) ⊂B. Moreover, if B is a 

singleton, then it is said to be an  - extreme point of A .The set of all  - extreme point of A is called its 

 − extreme points set and denoted by  ext A. 

 

Remark 2.4.(Wang and Ya, 2004): 

It follows from the definition 2.8 that every  - extreme point of A is its extreme point as well, i.e., 

ext A⊂ext A. 

 

New concepts of  − 𝑐𝑜𝑛𝑣𝑒𝑥 𝑖𝑡𝑦 of sets: 

In this paper McShane integral was used to obtain new results instead of the Bochner one. 

 

Definition 3.1: 

A ⊂ X   is said to be McShane- integral-convex (shortly,  (M) - convex  ) if every  measurable, McShane 

integrable function  f : [0, 1] ⟶ X with  f (t) ∈ A  a.e. satisfies (M)  f dμ ∈A
[0,1]

 . 

 

Remark 3.1: 

Since any Bochner integrable function is McShane integrable then every (M) - convex  set is  - convex. 

 

Remark 3.2: 

If the Banach space is finite dimensional, then the integability in McShane and Bochner sense coincides, 

therefore, by theorem 2.3 in [8], every convex subset of a finite dimensional Banach space is (M) - convex. 

 

Definition 3.2: 

A subset B ⊂ A is called an (M) - extremal subset of A if for any measurable function f : [0, 1] ⟶ X  

McShane integrable one-side-continuous (that is, continuous at left or at right in every point) with f (t) ∈  A  a.e. 

and (M)  f dμ ∈B
[0,1]

  implies f ([0, 1]) ⊂B . Moreover, if B is a singleton, then it is said to be an  - extreme 

point of A.The set of all  (M)  - extreme point of A is called its  (M) - extreme points set and denoted by  

(M)ext A. 
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Remark 3.3: 

According to the above definition any (M) - extreme point is  - extreme point and thus is extreme point . 

In other words,  for any A ⊂ X The following relationship is established  (M) ext A⊂ext A⊂ext A . 

 

Theorem 3.1: 

Every closed  - convex  subset of  X is (M) - convex. 

 

Proof: 

Let A  be an closed  - convex  subset of  X and  f : [0, 1] ⟶ X   is McShane integrable function  such that  
f ([0, 1]) ⊂A .Fix  x0∈A and ε>0 is   arbitrary .Since  f∈M then according to theorem 2.2 there is an η

ε
>0  such that if 

  E ⊂[0,1]   is  measurable with  μ(E) <ηε then   (M) f dμ
E

 
X
≤
ε

2
  .Consider the measurable sets Fi={t∈ 0,1 :  f(t) ≤i} . 

It is clear that  0,1 = Fi
∞
i=1  and so there exists nε∈N with  μ( 0,1 -Fnε)≤min⁡(ηε,

ε

2 x0 
)  . Now we define the function 

fε  as follows fε=fχFnε
+x0χ( 0,1 -Fnε) .It is clear that fε ([0, 1]) ⊂A and also according to theorem 2.1 we will gain fε∈β 

.since A  is an  - convex  subset of  X then According to Definition 2.7 and theorem 2.4 we have  

 β  fε dμ 0,1 
= M  fε dμ 0,1 

∈A.   

Moreover ,  M  f  dμ- M  fε dμ 0,1  0,1 
 ≤ sup

E⊆ 0,1 -Fnε

 (M) f dμ
E

 +  x0 dμ
 0,1 -Fnε

 ≤ε. Hence 

 M  f  dμ
 0,1 

∈A =A (A is a closed set) and proof is complete. 

 

Remark 3.4: 

From theorem 2.1 in [8] is obtained any closed convex set is (M) - convex. 

 

Theorem 3.2: 

Every open convex subset of  X is (M) - convex . 

 

Proof: 
Let A ⊂ X be a nonempty open convex set and and  f : [0, 1] ⟶ X   is measurable , McShane integrable function 

with f ([0, 1]) ⊂A .Replacing absolute values by norms throughout the usual proof of Lusinʼs theorem ,we can 
generalize that result to the banach valued case.There exists a compact subset F ∈Σ⊂[0,1] with μ(F)>0 such that f is 
continuous on F and hence  f(F) is a compact subset of A .For every ∈ F , it follows from the local convexity of  X that 

there exists some convex neighborhood  V(f t ) of  f t  such that V(f t )          ⊂A  ,then we obtain an open covering of  f(F) . 
The compactness of f(F) implies that there exists a finite subcovering .This gives us a finite covering of F with sets of 

the form f-1(V f t  )⋂F , i.e.  F⊆ f -1(V f ti  )⋂F
k
i=1  .As μ(F)>0 ,there exists an element of this covernig 

,Fi0
=f-1(V  f ti0

  )⋂F , with μ(Fi0
)>0 . By the theorem 2.5 we have 

1

μ(Fi0
)
(M) fdμ ∈co   (f Fi0

 )
Fi0

⊂V(f ti0
 )            ⊂A .If  μ(Fi0

) 

=1 then proof is complete .Otherwise we have    
1

μ( 0,1 -Fi0
)
(M) fdμ ∈co   (f  0,1 -Fi0

 )
 0,1 -Fi0

⊂A  .Then it follows from 

the convexity of A and the interior point theorem that 

 M  fdμ=μ(Fi0
)(

 0,1 

1

μ Fi0
 
 M  fdμ )

Fi0

+μ( 0,1 -Fi0
)(

1

μ( 0,1 -Fi0
)
(M) fdμ )∈ A

 0,1 -Fi0

 

 

Theorem 3.3: 
Let A ⊂ X  be a compact set .Then  (M) ext A≠∅ . 

 

Proof: 

Let F be the family of all compact  M  - extremal subsets of A .Then  F≠∅ (it contains A ) and it is ordered by the 
relation ‘ʻ⊃ʼʼ (i.e., for C1,C2∈F,C1≺C2⟺C1⊃C2) .Every totally ordered subset has an upper bound (its intersection 
upper bound  ,then by Zornʼs lemma there is a maximal element E∈F .It is sufficient to prove E is a singleton. Suppose 

that we can find x1,x2∈E and x1≠x2.There exists x* ∈ X* such that x*(x1)≠x*(x2) .Thus the 

E1={x∈E:x* x = min x* x :x∈E } is a compact proper subset of  E .We claim that E1 is  M  - extremal in E ,thus it is 

an   M  - extremal subsets of A ,this contradicts the maximality of  E .If E1 were not an  M  - extremal subsets of E 
,then there exists a measurable McShaane integrable, one-side continuous function f on [0,1] such that  f ([0, 1]) ⊂E 

and  (M)  f dμ∈E1[0,1]  and  t0∈[0,1] such that f(t0)∉E1 ,i.e., x* f(t0) > min x* x :x∈E .So there is ε>0 with  

x* f(t0) > min x* x :x∈E +ε .The one-side continuity of f imply that there is a δ>0 such that for every 

t∈ t0,t0+δ ⊂[0,1] we have x* f(t ) > min x* x :x∈E +ε .Now, using theorem 2.4 we have 
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x*   M  fdμ 
 0,1 

 = M  x*fdμ 
 t0,t0+δ 

+ M  x*fdμ 
 0,1 - t0,t0+δ 

> min x* x :x∈ E  

Which is a contradiction. 

 

Theorem 3.4: 

Let  A ⊂ X  be a nonempty compact convex set .Then  M ext A=ext A . 

 
Proof: 

From theorem 3.3 we have (M) ext A≠∅ .However from remark 3.3 we have  (M) ext A⊂ext A  . So  It is 

sufficient to prove   ext A⊂(M) ext A  .Consider x0∈ext A   and  f  be a   measurable ,McShane integrable one-side-

continuous function with f   0, 1  ⊂A and   M  fdμ 
 0,1 

=x0 . We will prove  f   0, 1  ={x0} .Suppose that there is 

t0∈ 0,1  such that f(t0)≠x0 .There exists an open convex neighborhood V f t0   of  f t0  such that x0∉V(f t0 )             .Since f 
is one-side-continuous, there exists δ>0 such that f   t0,t0+δ  ⊂V f t0  . Theorem 2.5 

implies
1

δ
(M) fdμ ∈co   (f  t0,t0+δ  )

 t0,t0+δ 
⊂V(f t0 )            ∩A  and

1

1-δ
(M) fdμ ∈A

 0,1 - t0,t0+δ 
 . 

Now we havex0=δ  
1

δ
(M) fdμ 

 t0,t0+δ 
 +(1-δ)  

1

1-δ
(M) fdμ 

 0,1 - t0,t0+δ 
  . 

But  x0∈ext A , hence  x0=
1

δ
(M) fdμ ∈

 t0,t0+δ 
V(f t0 )            ∩A  and so x0∈V(f t0 )            , this contradicts the fact of  

x0∉V(f t0 )             . 
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