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 Decomposition refers to the strategy of breaking up a large, difficult-to-solve problem 
into two or more smaller, easier-to-solve problems, such that the solution to the 
decomposed problems can be used to obtain the solution to the original problem. In the 
last years, decomposition techniques such as Benders decomposition are used 
efficiently and extensively to solve large scale optimization problems (particularly, in 
mixed integer variable optimization problems such as unit commitment and short term 
hydrothermal coordination). This paper reviews two basic decomposition methods 
(primal and dual decomposition) and used them to construct Dantzing-wolfe and 
Benders decomposition techniques. 
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INTRODUCTION 

 
Decomposition is a general approach to solving a problem by breaking it up into smaller ones and solving 

each of the smaller ones separately, either in parallel or sequentially. 
There are few decomposition methods to solve multi-variable problems. The famous decomposition 

methods are primal, dual (Pennanen, H., et al., 2011; Torresani, L., et al., 2013), Dantzing-Wolfe (Aganagic, 
M., S. Mokhtari, 1997) and Benders decomposition (Sifuentes, W.S., A. Vargas, 2007; Hoang Hai Hoc, 1982; 
Stephen Boyd, Lieven Vandenberghe, 2009). In this paper, these four famous decomposition methods will be 
described. In the next section, primal decomposition without constraints is introduced. The theory of dual 
decomposition without constraints is presented in section 3. Decomposition with constraints is discussed in 
section 4. The formulation of Dantzing-Wolfe decomposition is explained in section 5. In section 6, we 
elaborate Benders decomposition and an example solution with it. In section 7, decoupling method and its 
difference with decomposition process is described. Finally, in the last section a case study according to Benders 
method is presented and the main conclusions of the paper are summarized. 

 
Primal Decomposition without Constraints: 

At outset, we’ll consider the simplest possible case, an unconstrained optimization problem that splits into 
two sub- problem. (But note that the most impressive applications of decomposition occur when the problem is 
split into many sub-problems.) In our first perusal, we consider an unconstrained minimization problem, of the 
form 
 

( ) ( ) ( )yxfyxfxfMinimize ,, 2211 +=                                          (1) 
 
Where the variable is: ( )yxxx ,, 21= . Although the dimensions don’t matter here, it’s useful to think of 

1x  and 2x as having relatively high dimension, and y having relatively small dimension. The objective is 

almost block separable in 2x ; indeed, if we fix the sub-vector y , the problem becomes separable 1x  and 2x , 
and therefore can be solved by solving the two sub-problem independently. For this reason, y is called the 
complicating variable, because when it is fixed, the problem splits or decomposes. In other words, the variable y 
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complicates the problem. It is the variable that couples the two sub-problems. It considers ( )21 xx as the private 
variable or local variable associated with the first (second) sub-problem, and y as the public variable or 
interface variable or boundary variable between the two sub-problems. 

The observation that the problem becomes separable when y is fixed suggests a method for solving the 
problem (1). Let ( )y1ϕ  denotes the optimal value of the problem and similarly, let ( )2 yφ denotes the optimal 
value of the problem (Yong Fu, M. Shahidehpour, Zuyi Li, 2005): 
 

( )yxfeMinimize x ,111 =                                                                                                                            (2) 
 

( )yxfeMinimize x ,222 =                                                                                                                       (3) 
 
(Note that if f1 and f2 are convex, so are 1ϕ  and 2ϕ .) We refer to (2) as sub-problem 1, and (3) as sub-

problem 2. Then the original problem (1) is equivalent to the problem. 
 

( ) ( )yyeMinimize y 21 ϕϕ +=                                                                                                                (4) 
 
This problem is called the master problem. If the original problem is convex, so is the master problem. The 

variables of the master problem are the complicating or coupling variables of the original problem. The 
objective of the master problem is the sum of the optimal values of the sub-problem. 

A decomposition method solves the problem (1) by solving the master problem, using an iterative method 
such as the sub-gradient method. Each iteration requires solving the two sub-problem in order to evaluate 
( )y1ϕ and ( )y2ϕ and their gradients or sub-gradients. This can be done in parallel, but even if it is done 

sequentially, there will be substantial savings if the computational complexity of the problems grows more than 
linearly with problem size. 

Let’s see how to evaluate a sub-gradient of 1ϕ  in y , assuming the problem is convex. We first solve the 

associated sub-problem, i.e., we find  ( )yx1  that minimizes ( )yxf ,11 . Thus, there is a sub-gradient of f1 of the 

form (0, g1), and not surprisingly, g1 is a sub-gradient of 1ϕ  in y . We can carry out the same procedure to find 

a sub-gradient ( )yg 22 ϕ∂∈ , and then 21 gg +  is a sub-gradient of  21 ϕϕ +  in y . 
We can solve the master problem by a variety of methods, including bisection (if the dimension of y is one), 

gradient or quasi-Newton methods (if the functions are differentiable), or sub-gradient, cutting-plane, or 
ellipsoid methods (if the functions are non-differentiable). 

This basic decomposition method is called primal decomposition because the master algorithm manipulates 
(some of the) primal variables. 

When we use a sub-gradient method to solve the master problem, we get a very simple primal 
decomposition algorithm. Repeat below stages: 

- Solve the sub-problem (possibly in parallel). 

- Find 1x that minimized ( )yxf ,11 , and a sub-gradient ( )yg 11 ϕ∂∈ . 

- Find 2x  that minimized ( )yxf ,22 , and a sub-gradient ( )yg 22 ϕ∂∈ . 
- Update complicating variable. 

( )21 ggyy k +−= α                                                                                                                                (5) 

Here kα is a step length that can be chosen in any of the standard ways. 
We can interpret this decomposition method as follows. We have two sub-problem, with private variables 

or local variables 1x  and 2x , respectively. We also have the complicating variable y which appears in both sub-
problems. At each step of the master algorithm the complicating variable is fixed, which allows the two sub-
problems to be solved independently. From the two local solutions, we construct a sub-gradient for the master 
problem, and using this, we update the complicating variable. Then we repeat the process. When a sub-gradient 
method is used for the master problem, and 1ϕ and 2ϕ  are differentiable, the update has a very simple 
interpretation. We interpret g1 and g2 as the gradients of the optimal value of the sub-problem, with respect to 
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the complicating variable y . The update simply moves the complicating variable in a direction of improvement 
of the overall objective. 

The primal decomposition method works well when there are few complicating variables, and we have 
some good or fast methods for solving the sub-problem. For example, if one of the sub-problem is quadratic, we 
can solve it analytically; in this case the optimal value is also quadratic, and given by a Scour complement of the 
local quadratic cost function. (But this trick is so simple that most people would not call it decomposition.) 

The basic primal decomposition method described above can be extended in several ways. We can add 
separable constraints, i.e., constraints of the form 11 Cx ∈ and 22 Cx ∈ . In this case (and also, in the case when 

dome ϕ is not all vectors) we have the possibility that ( ) ∞=yiϕ  (i.e., ϕdomy∉ ) for some choices of y . 

In this case we find a cutting-plane that separates y from domainϕ , to use in the master algorithm 
(Shahidehpour, M., Yong Fu, 2005). 
 
Dual Decomposition Without Constraints: 

We can apply decomposition to the problem (1) after introducing some new variables, and working with the 
dual problem. We first express the problem as by introducing a new variable and equality constraint: 

 
( ) ( ) ( )

21

222111 ,,
yytosubject

yxfyxfxfMinimize
=

+=
                                                                                              (6) 

 
A local version of the complicating variable y, along with a consistency constraint that requires the two 

local versions to be equal is introduced. Note that the objective is now separable, with the variable partition 
( )11, yx and ( )22 , yx . Now we form the dual problem. The Lagrangian is separable (Bo Lu, M. Shahidehpour, 
2005). 
 
( ) ( ) ( ) 212221112211 ,,,,,, yyyxfyxfyxyxL TT υυυ −++=                                                                  (7) 

 
The dual function is: 

 
( ) ( ) ( )υυυ 21 ggg +=                                                                                                                              (8) 

 
Where: 

 
( ) ( )( )1111,1 ,inf

11
yyxfg T

yx υυ ++=                                                                                                        (9) 
 

( ) ( )( )2222,2 ,inf
22

yyxfg T
yx υυ ++=                                                                                                      (10) 

 
Note that g1 and g2 can be evaluated completely independently, e.g., in parallel. Also note that 1g and 

2g  can 

be expressed in terms of the conjugates of 1f and 2f : 
 

( ) ( ) ( ) ( ),,0,,0 2211 υυυυ −−=−−= ∗∗ fgfg                                                                                                (11) 
 
The dual problem with υ variable is: 

 
( ) ( ) ( ) ( )υυυυ −−−−=+ ∗∗ ,0,0: 2121 ffggMaximize                                                                               (12) 

 
This is the master problem in dual decomposition. The master algorithm solves this problem using a sub-

gradient, cutting-plane, or other method. To evaluate a sub-gradient of 1g− (or 2g− ) is easy. We find 1x  and 

1
y that minimize  ( ) 1111 , yyxf Tυ++  over 1x  land 1y . Then a sub-gradient of 1g−  at υ is given by

1
y− . 

Similarly, if 2x and 
2

y  minimize ( ) 2222 , yyxf Tυ−  over 2x  and 2y , then a sub-gradient of 2g− at υ is 
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given by

2
y− . Thus, a sub-gradient of the negative dual function g− is given by

12
yy − , which is nothing 

more than the consistency constraint residual. 
If we use a sub-gradient method to solve the master problem, the dual decomposition algorithm has a very 

simple form. 
Repeat to solve the sub-problem (possibly in parallel): 

- Find 1x  and 1y that minimize ( ) 1111 , yyxf Tυ++ . 

- Find 2x  and 2y that minimize ( ) 222 , yyxf Tυ− . 
- Update dual variables (prices). 
 

( )12: yyk +−= αυυ                                                                                                                                  (13) 
    
υ = υ − αk (y2 − y1)                                                                                                                                     (14) 

 
Here kα is a step size which can be chosen several ways. If the dual function g is differentiable, then we 

can choose a constant step size, provided it is small enough. Another choice in this case is to carry out a line 
search on the dual objective. If the dual function is non-differentiable, we can use a diminishing non-sum able 
step size, such as kk /αα = . 

At each step of the dual decomposition algorithm, we have a lower bound on ∗p , the optimal value of the 
original problem, given by: 
 

( ) ( ) ( ) 22221111 ,, yyxfyyxfgp TT υυυ −++=≥∗                                                                               (15) 
 
That 2211 ,,, yxyx is the iterations. Generally, the iterations are not feasible for the original problem, i.e., 

we have 012 ≠− yy . (If they are feasible, we have maximized g.) A reasonable guess of a feasible point can be 

constructed from this iterate as: ( ) ( )2211 ,,, yxyx  where: 

( ) 2/21 yyy += y = (y1 + y2)/2                                                                                                               (16) 

In other words, 1y  and 2y  (which are different) is replaced with their average value. (The average is the 

projection of  ( )21, yy  onto the feasible set ( )21 yy = .) This gives an upper bound on ∗p , given by: 
 

( ) ( )222111 ,, yxfyxfp +≤∗                                                                                                                    (17) 
 
A better feasible point can be found by replacing 1y  and 2y  with their average, and then solving the two 

sub-problems (2) and (3) encountered in primal decomposition, i.e., by evaluating ( ) ( )yy 21 ϕϕ + . This gives 
the bound: 

( ) ( )yyp 21 ϕϕ +≤∗                                                                                                                              (18) 
 
Dual decomposition has an interesting economic interpretation. We imagine two separate economic units, 

each with its own private variables and cost function, but also with some coupled variables. We can think of 1y
as the amounts of some resources consumed by the first unit, and 2y as the amounts of some resources 

generated by the second unit. Then, the consistency condition 21 yy = , means that supply is equal to demand. In 
primal decomposition, the master algorithm simply fixes the amount of resources to be transferred from one unit 
to the other, and updates these fixed transfer amounts until the total cost is minimized.  

In dual decomposition, υ as a set of prices for the resources is interpreted. The master algorithm sets the 
prices, not the actual amount of the transfer from one unit to the other. Then, each unit independently operates in 
such a way that its cost, including the cost of the resource transfer (or profit generated from it), is minimized. 
The dual decomposition master algorithm adjusts the prices in order to bring the supply into consistency with 
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the demand. In economics, the master algorithm is called a price adjustment algorithm, or atonement procedure 
(Zuyi Li, M. Shahidehpour, 2005). 

There is one subtlety in dual decomposition. Even if we do find the optimal prices, ∗υ , there is the question 
of finding the optimal values of 1x , 2x  and y . When 1f and 2f are strictly convex, the points found in 
evaluating g1 and g2 are guaranteed to converge to optimal, but in general the situation can be more difficult. 
There are also some standard tricks for regularizing the sub-problem that work very well in practice. As in the 
primal decomposition method, it can be encountered infinite values for the sub-problem. In dual decomposition, 
it has ( ) −∞=υig , this can occur for some values of υ, if the functions if  grow only linearly in iy .  
 
Decomposition with Constraints: 

So far, it has been considered the case, where two problems would be separable, except for some 
complicating variables that appear in both sub-problems. We can also consider the case where the two sub-
problems are coupled via constraints that involve both sets of variables. As a simple example, suppose our 
problem has the form: 

( ) ( )

( ) ( ) 0
,

1111

2211

2211

≤+
∈∈

+

xhxh
CxCxtosubject

xfxfMinimize
                                                                                                             (19) 

 
Here 1C  and `2C  are the feasible sets of the sub-problem, presumably described by linear equalities and 

convex inequalities. The functions pn RRh →:1 and pn RRh →:2 have components that are convex. The 

sub-problem are coupled via the p constraints that involve both 1x and 2x . We refer to these as complicating 

constraints (since without them, the problems involving 1x and 2x can be solved separately) (Yong Fu, M. 
Shahidehpour, Zuyi Li, 2006). 

 
Primal Decomposition: 

To use primal decomposition, we can introduce a variable pRt ∈  that represents the amount of the 
resources allocated to the first sub-problem. As a result, t−   is allocated to the second sub-problem. The first 
sub-problem becomes: 

( )
( ) txhCxtosubject

xfMinimize
≤∈ 1111

11

,
                                                                                                                (20) 

And the second one: 
( )

( ) txhCxtosubject
xfMinimize

≤∈ 2222

22

,
                                                                                                             (21) 

Let ( )t1ϕ and ( )t2ϕ  denote the optimal values of the sub-problem (20) and (21), respectively. Evidently 

the original problem (19) is equivalent to the master problem of minimizing ( ) ( ) ( )ttt 21 ϕϕϕ +=  over the 
allocation vector t. These sub-problem can be solved separately, when t  is fixed. Not surprisingly, we can find a 
sub-gradient for the optimal value of each sub-problem from an optimal dual variable associated with the 
coupling constraint. Let ( )zp be the optimal value of the convex optimization problem: 

( )
( ) zxhXxtosubject

xfMinimize
≤∈ ,

                                                                                                                  (22) 

And suppose pdomz∈ . Let ( )zλ  be an optimal dual variable associated with the constraint: ( ) zxh ≤
then, ( )zλ−  is a sub-gradient of p in z . To see this, we consider the value of p  at another point z : 
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( ) ( ) ( )( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )( )
( ) ( ) ( )( )( ) ( ) ( )

( ) ( )( ) ( )zzzz

zzzzxhzxf

zzzxhzxf

zxhzxfzxhxfzp

T

TT
Xx

T
Xx

TT
Xx

T
Xx

−−+=

−+−+=

−+−+=

−+≥−+=

∈

∈

∈∈≥









λϕ

λλ

λ

λλλ

inf

inf

infinfsup 0

                                                              (23) 

This holds for all points pdomz ∈ , so ( )zλ− is a sub-gradient of p  in z .  

Thus, to find a sub-gradient ofϕ , we solve the two sub-problem, to find optimal 1x and 2x , as well as 

optimal dual variables 1λ  and 2λ associated with the constraints ( ) txh ≤11  and ( ) txh −≤22 , respectively. 
Then we have: 

( )tϕλλ ∂∈− 12                                                                                                                                        (24) 
It is also possible that ϕdomt∉ . In this case we can generate a cutting plane that separates t  from dome

ϕ , for use in the master algorithm. Primal decomposition, using a sub-gradient master algorithm, has the 
following simple form (Jae Hyung Roh, M. Shahidehpour, Yong Fu, 2007): 

- Solve the sub-problem (possibly in parallel). 

- Solve (8), to find an optimal 1x  and 1λ . 

- Solve (9), to find an optimal 2x and 2λ . 
- Update resource allocation. 

( )12: λλα −−= ktt                                                                                                                                  (25) 

Here kα is an appropriate step size. At every step of this algorithm we have points that are feasible for the 
original problem. 

 
Dual Decomposition: 

Dual decomposition for this case is straightforward. We form the partial Lagrangian which is separable: 
( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )22221111

2211221121 ,,

xhxfxhxf
xhxhxfxfxxL

TT

T

λλ

λλ

+++=

+++=
                                                                             (26) 

So it can be minimized over 1x and 2x separately, given the dual variableλ , to find: 

( ) ( ) ( )λλλ 21 ggg +=                                                                                                                            (27) 

For example, to find ( )λ1g , the sub-problem below should be solved: 

( ) ( )
11

1111

Cxtosubject
xhxfMinimize T

∈
+ λ

                                                                                                                 (28) 

And to find ( )λ2g , this sub-problem should be solved: 

( ) ( )
22

2222

Cxtosubject
xhxfMinimize T

∈
+λ

                                                                                                                (29) 

A sub-gradient of 1g−  at λ   is, naturally, ( )11 xh , 1x  is any solution of sub-problem (10). To find a sub-

gradient of g , the master problem objective, we solve both sub-problem, to get solutions 1x and 2x , 
respectively. A sub-gradient of g− is then ( ) ( )2211 xhxh + . The master algorithm updates (the price vector) λ
based on this sub-gradient. If we use a projected sub-gradient method to update λ we get a very simple 
algorithm. Repeat below stages: 

- Solve the sub-problem (possibly in parallel). 
- Solve (10) to find an optimal 1x . 

- Solve (11) to find an optimal 2x . 
- Update dual variables (prices). 

( ) ( )( )( )2211: xhxhk ++= αλλ                                                                                                                (30) 
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At each step we have a lower bound on ∗p , given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2222111121 xhxfxhxfggg TT λλλλλ +++=+=                                                            (31) 
The iterations in the dual decomposition method need not be feasible. 

( ) ( ) 02211 ≤+ xhxh                                                                                                                                  (32) 
At the cost of solving two additional sub-problems, however, we can (often) construct a feasible set of 

variables, which will give us an upper bound on ∗p . When: 
( ) ( ) 02211 ≤+ xhxh                                                                                                                                 (33) 

It's defined: 
( ) ( )( ) 2/2211 xhxht +=                                                                                                                           (34) 

And solve the primal sub-problem (20) and (21). This is nothing more than projecting the current 
(infeasible) resources used, ( )11 xh  and ( )22 xh , onto the set of feasible resource allocations, which must sum to 
no more than 0. As in primal decomposition, it can happen that ϕdomt∉ . But when ϕdomt∉ , this method 

gives a feasible point and an upper bound on ∗p (Jae Hyung Roh, M. Shahidehpour, Yong Fu, 2007).  
 

Coupling constraints and coupling variables: 
Except for the details of computing the relevant sub-gradients, primal and dual decomposition for problems 

with coupling variables and coupling constraints seem quite similar. In fact, we can readily transform each into 
the other. For example, we can start with the problem with coupling constraints (19), and introduce new 
variables 1y and 2y , that bound the subsystem coupling constraint functions, to obtain 

( ) ( )
( )
( )

21

22222

11111

2211

,
,

yy
yxhCx

yxhCxtosubject
xfxfMinimize

=
−≤∈

≤∈
                                                                                                        (35) 

We now have a problem of the form (17), i.e., a problem that is separable, except for a consistency 
constraint that requires two (vector) variables of the sub-problem to be equal. Any problem that can be 
decomposed into two sub-problem that are coupled by some common variables, or equality or inequality 
constraints, can be put in this standard form, i.e., two sub-problem that are independent except for one 
consistency constraint that requires a sub variable of one to be equal to a sub-variable of the other. Primal or 
dual decomposition is then readily applied; only the details of computing the needed sub-gradients for the 
master problem vary from problem to problem (Yong Fu, M. Shahidehpour, 2007).   
 
Dantzing-Wolfe Decomposition: 

Another important decomposition technique is Dantzing-Wolfe decomposition developed by Dantzing and 
Wolfe. Dantzing-Wolfe decomposition is related to Benders decomposition in that it is equivalent to performing 
Benders decomposition on the dual of some linear program. As Benders decomposition is an iterative procedure 
in which a new row is added to the master program after any iteration, Dantzing-Wolfe decomposition is an 
iterative procedure in which a new column is added to the master program after any iteration. Dantzing-Wolfe 
decomposition can be applied to problems with block angular structure. The basic idea of this method is to solve 
the problems of the following form: 

0,0 21

221

111

2211

2211

≥≥
=
=

=+
+=

XX
bXB
bXB

bXAXAtosubject
XCXCZMinimize TT

                                                                                                                 (36) 

Where 1A , 2A , 1B  and 2B are matrices with sizes m×n1, m× n2, m1×n1 and m2×n2, respectively. 

Furthermore, 1c , 2c , 1X  and 2X  are vectors of sizes n1 ×1, n2 ×1, n1 ×1 and n1 ×1, respectively. For the sake 
of simplicity, it is assumed S1 and S2 are bounded: 

}{ 111111 ,0 bXBXXS =≥=                                                                                                                   (37) 
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}{ 222222 ,0 bXBXXS =≥=                                                                                                               (38) 

Let }{ 1112111 ,...,,W KXXX= and }{ 2222212 ,...,,W KXXX=  be the sets of all extreme points of the 
convex polyhedron S1 and 2, respectively. So, any point x ϵ Sj can be written as:  

.2,1,...,2,1

.

.

)2,1;;2,1(0,1,.=x
kj

1k

==

=

=

===∑∑
=

jandKkfor
XCf

XAp

Kkwherex

j

jk
T
jjk

jkjjk

k
jkjkjkjk λλλ

                                                                         (39) 

Then, the following full master program is equivalent to: 

12

11

1
2

1
1

1
22

1
11

1
22

1
11

,...,.2,10
,...,.2,10

1

1

..

..

2

1

21

21

kk
kk

pptosubject

ffMinimize

k

k

k

k
k

k

k
k

k

k
kk

k

k
kk

k

k
kk

k

k
kk

=≥
=≥

=

=

+

+

∑

∑

∑∑

∑∑

=

=

==

==

λ
λ

λ

λ

λλ

λλ

                                                                                                             (40) 

This master program is completely equivalent to the original. It has only 2+m  rows, compared to the 

21 mmm ++  rows of the original problem. It also has as many columns as the sum of the numbers of extreme 

points of polyhedrons 1S and 2S , i.e., 21 kk + columns. To solve this full master program, simplex method can 
be used. Simple method basically looks to the extreme points of the feasible set one by one to check whether it 
is the optimal solution. However, in our case, the number of extreme points ( 21 kk + ) may be very large 
(Jianhui Wang, M. Shahidehpour, Zuyi Li, 2008). Instead of checking all these points, a technique called 
column generation is used. In this technique, rather than tabulating all columns, columns are created to enter the 
basis as they are needed. Since the master program has 2+m equation constraints, a feasible basis will consist 
of 2+m columns, that is, these columns are linearly independent, and the unique solution of the constraint 
equations obtained by setting to zero those variables associated with all other columns is nonnegative. If the 
simple method is used in performing the calculations, there will also be the 2+m  vector of prices ( ππ ˆ, ) the 

m-vector 𝜋𝜋 associated with the first m constraints and the 2-vector ( )21,πππ =  with the remaining two. The 
inner product of the price vector with any column of the basis must be equal to the cost associated with that 
column; in the case of master program this relation can be written as: 

kk fP 1
1

1 =+ ππ                                                                                                                                        (41) 

kk fP 2
2

2 =+ππ                                                                                                                                      (42) 
 
One step of the simple method iteration for solving the master program would be performed as follows: find 

a column of the constraint matrix whose reduced cost is negative, that is, for which: 
0ˆ <−− jjkjk Pf ππ                                                                                                                                (43) 

Where j=1, 2. Add this column to the current basis, and delete one column from the basis in such a way that 
the new basis is still feasible. If no column satisfying the above inequality can be found, then the current 
solution solves the master problem. Otherwise, the simple method gives the appropriate rules for the removal of 
a column from the basis and for the calculation of the new prices associated with the new basis, with which the 
next iteration step can begin. 
 
Dantzing-Wolfe Decomposition Algorithm: 
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Step 1: Assume that an initial basic feasible solution for the master program is available, with basis matrix 

B  and simplex multipliers (price vectors) ( )ππ ˆ, .Using the simplex multipliers, solve the following sub-
problem: 

( )

2,1,0 =≥

=

−=

jx
bxBtosubject

xAczMinimize

j

jjj

jjjj π
                                                                                                                      (44) 

Obtaining solutions ( ) ( )21 ˆ,ˆ xxx j =π , xj(𝜋𝜋) = (x^
1, x^

2) and optimal objective values ( )21 ˆ,ˆ zz . 
Step 2: Compute: 

jj z πθ ˆ1̂ −= θj = z^
j  𝜋𝜋^

j,  for 2,1=j                                                                                                       (45) 

 If for all j , 0≥jθ , then the solution is optimal for the master program. Thus, the algorithm is terminated. 

Otherwise ( jθ < 0), form the new column as
( )









1
πjj xA

. Add this column to the basis and form a new 

basis and new prices using the rules of simplex method and return to Step1 (Tor, O.B., et al., 2008). 
 

Benders Decomposition: 
Benders Decomposition is an attractive approach for solving some mixed variable programming problems. 

This section consists of precise Benders decomposition algorithm to solve mixed integer nonlinear programs 
and one example applying the algorithm is presented. Assume an original mixed integer (zero-one type) 
nonlinear programming problem of the form: 

( )

( )
( )
( )

0,
1,0

34

232

11

21,,

≥
∈

≤+
≤++

≤

++

ZY
X

bZAYJ
bZAYHXA

bAtosubject
ZCYGXCMaximize zyx

                                                                                                          (46) 

Where: 
 
X  Vector of ( )1,0  integer variables; 

1C  Vector of objective function coefficients for the X  variables; 

1A  Matrix of constraint coefficients for the X  variables in constraints containing only X  variables; 

2A         Matrix of constraint coefficients for the X  variables in constraints linking X , Y  and Z  
variables; 

Y       Vector of nonnegative real variables which contains nonlinear terms in either the objective function 
or the constraints; The set Y  may be null, but either Y  or Z  must exist for the procedure to function. 

( )YG    Nonlinear (or possibly linear) function involving the Y  variables in the overall objective function; 

( )YH   Set of nonlinear (or possibly linear) functions involving the Y  variables those appear in constraints 

linking X , Y  and Z  variables. Either ( )YH or 3A must exist for this procedure to work. 

( )YJ    Set of nonlinear (or possibly linear) functions involving the Y  variables in constraints containing 
only Y and Z  variables. 

Z  Vector of non-negative real variables that appear in the problem in a linear fashion; This vector may be 
null, but either Y  or Z  must exist for the program to work. 

2C  Vector of objective function coefficients for the Z  variables; 

3A  Matrix of constraint coefficients for the Z  variables in the constraints linking the X ,Y  and Z  

variables. Either ( )YH or 3A must exist for this procedure to work. 
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4A  Matrix of constraint coefficients for the Z  variables in the constraints which contain only; Y and Z  

variables; 

1b  Vector of resource endowments for constraints containing only X  variables; 

2b  Vector of resource endowments for constraints linking, X , Y  and Z variables. 

3b  Vector of resource endowments for constraints containing only Y  and Z  variables; 
This problem will henceforth be referred to as the original problem. The problem is characterized by (1) the 

presence of the integer variables ( X ) and (2) linearly separable functions between the integer and real 
variables. To simplify the problem, suppose the integer variables were fixed at some level X . The original 
problem then reduces to: 

( )
( )
( )

0,
354

213

12,

≥
≤+
−≤+

++

ZY
bZAYJ

XAbZAYHtosubject
XCZCYGMaximize ZY

                                                                                                          (47) 

This reduced problem (henceforth referred to an s the sub-problem) has a corresponding dual. 

( )[ ] ( )[ ] ( )
( ) ( )

( ) ( ) ( )

0,,
243

322,,

≥
≥+

∇≥∇+∇









∇−∇−

∇
−−+−−

λγ
λγ

λγ
λγ

λγλγ

Y
CAA

YGYJYHtosubject
YJYH

YG
YYJbYHXAbMinimizeY

           (48) 

Where: 
 γ  is the dual variable associated with the constraints containing real and integer variables. 
 λ  is the dual variable associated with the constraints containing only real variables. 

( )YG∇  is the gradient of ( )YG . 

( )YH∇ is the gradient of ( )YH . 

( )YJ∇ is the gradient of ( )YJ . 
If an optimum solution exists for the primal of the sub-problem. An optimal set ofY , γ  and λ  values can 

be identified, all solution values being dependent on X . The dual objective function will also match that 
identified for the primal problem. Thus, the dual sub-problem can be substituted for the primal sub-problem in 
the original problem as follows: 























≥
≥+

∇≥∇+∇
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−−+−−+

+

∈
≤

0,,

)()()(
)()()(

)]([)([)((

)1,0(

,,,

243

322,,

11

,1

Y
CAA

YCYJYHtoSubject
YJYHYC

YJbYHXAbYCMinimize

X
bXA
toSubject

Yx
Maximize Yxc

λγ
λγ

λγ
λγγ

λγ
λγ

λγ

(49) 

This problem is maximized over X ,Y , γ  and λ . Substituting Q for the dual sub-problem yields: 

( )
( ) ( )
unboundedisQ

reginfeasibleYX
YXWQ

bXAtosubject
QXCMaximize

∈∈
≤

≤
+

λγ
λγ

,,1,0
,,,

11

1

                                                                                         (50) 

Where: 
( ) [ ]

( ) ( ) ( ) ( ) ( ) ( )[ ][ ]YJYHYGYYJYHYGMinimum
bXAbYXW

iY ∇−∇−∇−−−
++−=

λγλλ
λγλγ

λγ ,,

322,,,
  (51) 

This formulation is known as the master problem. RestrictingY ,γ , and λ to those values that satisfy all 
sub-problem constraints allows us to explicitly drop the sub-problem constraints from the model. Although in 
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theory the formulation will produce an optimal solution, it is in fact an intractable model. Since an infinite 
number of ( )λγ ,,,YXW solutions exist. The key to Benders Decomposition is to identify a relevant subset of 

( )λγ ,,,YXW values that will lead us to the optimum solution. To demonstrate how these relevant constraints 

might be identified, we define ( )iXV as being equals to the value of objective function of sub-problem:
 

( ) ( )[ ]( )
( )[ ] ( ) ( ) ( )








∇−∇−∇−−
+−−+

=
HJYHYGYYJb

YHXAbYG
MinimumXV

iiiiiii

iiii
Yi iii λγλ

γ
λγ

3

22
,,

                         (52) 

Where iY , iγ and iλ are the optimal dual variables for Xi the equation can be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]{ }HJYHYGYYJYHYGMinimumbXAbXV iiiiiiiiiiYiiiii iii
∇−∇−∇−−−++−= λλλγλγγ λγ ,,322   

(53) 

Substituting this result to ( )iiiYXW λγ ,,, gives us: 

( )
( ) 322

322,,,
bXAbXV

bXAbYXW

iiii

iiiiii

λγγ
λγγλγ

−+−
++−=

                                                                                            (54) 

( ) ( ) XAXVAYXW iiiiii 22,,, λγλγ −+=                                                                                          (55) 
The new master problem becomes: 

( )

( )
( ) unboundedisQXX

XAXVQXA
bXAtoSubject

SYYrYCMaximize

iiii

YX

1,0,

2/

21

22

11

,

∈
+≤+

≤

′−′

γγ
                                                                                             (56) 

The sub-problem is optimized for each X  specified. With the resultant dual variables used to create a 

corresponding constraint ( ( ) iiiAi XAXVQXA 2γγ +≤+  known as a Benders cut) in the master problem. 

Through this problem new values of X  are chosen. The sub-problem solution is optimal for the X  set used in 

creating the problem, but is not optimal unless X  is the optimal set of X values (
∗X ) (Cong Liu, M. 

Shahidehpour, Yong Fu, Zuyi Li, 2009). 
 

The Benders Algorithm: 
Step 1: An initial vector for X is input. Initial values for the optimistic and conservative bounds are set, as 

is the convergence tolerance (ε ) and iteration number ( 0=M ). The initial optimistic bound is∞ for a 
maximization problem, -∞ being the corresponding conservative bound. 

Step 2: The initial sub-problem is solved after adjusting the sub-problem to reflect the X  vector's impact 
on constraint right hand sides. 

Step 3: The sub-problem objective function plus XC1 is compared to the previous conservative bound. If 
this sum represents an improvement over the previous conservative bound, it becomes the new conservative 
bound. The current X  and associated sub-problem solutions are saved as the incumbent solution. The 
difference between conservative and optimistic bounds is then compared to the convergence tolerance (ε ). If 
bound difference is less than or equal toε , go to Step 7. If not, the iteration number is incremented by 1 and 
new Benders cut is formed, which is then added as another constraint in the master problem. 

Step 4: The master problem is solved. 
Step 5: The master problem objective function value becomes the new optimistic bound. The bonds are 

again checked for problem convergence. If the difference is less than or equal to the tolerance, go to Step 7. If 
not, the iXAb 22 −  right hand side in the sub-problem is computed based on the new master problem solution. 

Step 6: The sub-problem is solved given the X solution from Step 4. One then returns to Step 3. 
Step 7: The dual variables are calculated for the optimal solution. The incumbent solution from Step 3 is 

then printed and the procedure terminated (Khodaei, A., M. Shahidehpour, 2010; Khodaei, A., et al., 2010). 
 

Decoupling Approach: 

As sampling-based algorithms continue to improve along with computation power, it becomes increasingly 
feasible in practice to directly solve challenging planning problems under differential constraints. There are 
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many situations, however, in which computing such solutions is still too costly due to expensive numerical 
integration, collision detection, and complicated obstacles in a high-dimensional state space. Decoupled 
approaches become appealing because they divide the big problem into modules that are each easier to solve. 
Ideally, we would like to obtain feedback plans on any state space in the presence of obstacles and differential 
constraints. This assumes that the state can be reliably measured during execution. A typical decoupled 
approach involves four modules: 

1. Use a motion planning algorithm to find a collision-free path, τ : [0, 1] → Cfree. 
2. Transform τ into a new path τ´ so that velocity constraints on C if there are any) are satisfied. This 

might, for example, ensure that the Dubin's car can actually follow the path. At the very least, some path-
smoothing is needed in most circumstances. 

3. Compute a timing function σ: [0, tF] → [0, 1]  for τ´ so that τ´oσ is a time-parameterized path through 
Cfree with the following requirement. The state trajectory 𝑥𝑥� must satisfy 𝑥̇𝑥= f(x(t),u(t)) and u(t)  U(x(t)) for all 
time, until uT is applied at time tF. 

4. Design a feedback plan (or feedback control law), π: X → U  that tracks 𝑥𝑥�. The plan should attempt to 
minimize the error between the desired state and the measured state during execution (Fairman, F.W., 1988). 

Given recent techniques and computation power, the significance of this approach may diminish somewhat; 
however, it remains an important way to decompose and solve problems. This decomposition is arbitrary. If 
every module can be solved, then it is sufficient for producing a solution; however, such decomposition is not 
necessary. At any step along the way, completeness may be lost because of poor choices in earlier modules. It is 
often difficult for modules to take into account problems that may arise later. 

  
Case Study: 

An example may aid in gaining a better understanding of the decomposition solution process. Assume a 
risk-averse farmer is interested in identifying how many acres of cotton and sorghum he should produce on his 
200-acre farm. Complicating his decision is the government farm program in which he may want to participate. 
Assume the program requires a farmer interested in participating for a single crop to participate on all acres 
planted to that crop and to also participate on all acres planted to other government-supported crops on that 
farm. What combined crop mix-program participation strategy will maximize his utility in an E-V sense? 

A mixed integer-nonlinear programming problem which addresses a form of this question is: 
( )

( ) 0,,,1,0,
2500815612
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                                                                                            (57) 

Where: 
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C  is a vector of net returns (in dollars); S  is a covariance matrix of net returns (in dollars); 1X  and 2X
represent participation and non-participation, respectively, in the government farm program; 11Y and 12Y
represent cotton and sorghum produced under the program; 21Y  and 22Y represent the same crops produced 
outside the program; and r represents the farmer's degree of risk aversion (0.00056). The iterative solution using 
the above algorithm is as follows: 

Step 1: Set the initial parameters 
Conservative Bound= -∞ 
Optimistic Bound= +∞ 
Iteration Number (M) = 0  
Tolerance Level (ε) = 0 
The initial integer solution is 0,1 21 == XX . 
(i.e., participation in the government program) 
Step 2: The initial sub-problem becomes 
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                                                                                          (59) 

Solving this sub-problem yields the solution Objective = 7520. 

077.2000
20.1500200

222212

112111

====
====

λγ
λγ

YY
YY

                                                                                          (60) 

Step3: Adding the integer component of the master problem objective function gives the resulting sub-
problem solution 

0 + 7520 = 7520 
Conservative Bound = max (-∞, 7520) = 7520 
Optimistic Bound= +∞ 
The latest sub-problem solution becomes the incumbent solution and is saved. Because of the difference 

between conservative and optimistic bounds is larger thanε . A Benders cut must be generated and the master 
problem solved. The iteration number is incremented to 1 and Benders cut formed. 

( )( )( ) ( )( )( )
( )( )( ) ( )( )( )21

21

21077.202100
21077.2021007520

XX
XXQ

−+−+
−−−−≤                                                                                        (61) 

 
Or 

75204362 2 ≤+QX                                                                                                                                 (62) 
 
This cut indicates the predicted objective function of the dual problem, given these shadow prices, is 7520 + 

4362 times the value of 2X . Note that if the original integer values were inserted into this cut (i.e.,

0,1 21 == XX ), Q  would equal the latest sub-problem objective function (7520). The cut suggests that the 

objective function could be increased by 4362 if 2X were in the solution. The value 4362 is based on the 

shadow price for one unit of 21Y and (or) 22Y entering the solution times the number of total units of 21Y and

22Y allowed to enter the solution if )210(12 =X . This value overstates the worth of 2X in solution, because 

the third constraint in the sub-problem prohibits the sum of 21Y plus 22Y from exceeding 200. Further, the 

shadow price does not reflect the indirect effect of having 2X  in solution; i.e., 2X in solution means 1X must 
come out of solution. 

Step 4: The Benders cut is added to the master problem, which is then solved. 

75204362
1

2

21

,

≤+−
=+

QX
XXtoSubject

QMaximize XQ

                                                                                                                            (63) 

The solution is: 1,0,11881 21 === XXQ . The optimistic bound becomes 1188. 
Step 5: This master problem solution suggests that non-participation in the program will result in an original 

problem objective function that will not exceed 11881. As we just indicated, however, the actual solution value 
will be below this amount. Because the difference between bounds is still greater than the tolerance level, a 
second sub-problem must be created and solved. The algorithm uses this new integer solution to create a new 
sub-problem and returns to Step 2. 

Step 2: The new sub-problem is solved. 
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The Solution is Objective= 4576, 
0.00.045.1600
17.717.4555.390
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YY
YY  

Step 3: The objective function value from this latest sub-problem becomes the current challenger to the 
incumbent conservative bound (7520). Because of the challenger (4576) is less than the incumbent (7520). The 
incumbent sub-problem solution remains unchanged. Likewise, the difference between the conservative and 
optimistic bounds is also unchanged, necessitating creation of another Benders cut that is added to the master 
problem. The cut is: 

( )( )( ) ( )( )( )
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Or 
45759486 1 ≤+− QX                                                                                                                           (66) 

 
At this point all possible integer solution combinations have been considered and Benders cuts generated 

for them. The next master problem solution should, therefore, result in convergence. The master problem is: 

45759486
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                                                                                                                (67) 

Step 4: The solution to the master problem is objective = 7520, 017520 21 === XXQ . 
Step 5: The master problem objective function becomes the new optimistic bound. Since the optimistic and 

conservative bound are the same, the iterative process is terminated. Thus, the solution is objective= 7520 and 
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02001
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21111

===
===

YYX
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This example illustrates how the algorithm constructs trial solutions using the master problem and then tests 
them on the sub-problem. Even if the sub-problem created by the master problem is not the best sub-problem 
solution, the information generated by the sub-problem is useful in helping the master problem learn about the 
overall problem. Note that a Benders cut was generated for each possible combination of X  values. This is not 
uncommon for small problems but is rare in larger problems. 

 
Conclusion: 

In this paper, the decomposition methods have been presented. Decomposition methods are efficient 
methods to solve multi-variable optimization problems. We described two basic decomposition methods (primal 
and dual decomposition) and used them to construct Dantzing-wolfe and Benders decomposition techniques. 
Benders decomposition method is used in large scale optimization problems extensively and Dantzing-Wolf 
decomposition also Benders decomposition method is the most efficient technique to solve mixed integer 
programming (already, the most robust method to solve short-term hydrothermal coordination with ac modeling 
is Benders decomposition). Also decoupling method and its algorithm procedure is explained in the last section. 
Finally a case study is presented for understanding decomposition method process. 

 
REFERENCES 

 
Aganagic, M., S. Mokhtari, 1997. "Security constrained economic dispatch using nonlinear Dantzig-Wolfe 

decomposition", IEEE Transactions on Power systems, 12(1): 105-112. 
Bo Lu, M. Shahidehpour, 2005. "Unit Commitment with flexible generating units", IEEE Transactions on 

Power Systems, 20(2): 1022-1034. 
Cong Liu, M. Shahidehpour, Yong Fu, Zuyi Li, 2009. "Security-Constrained unit commitment with natural 

gas transmission constraints", IEEE Transactions on Power Systems, 24(3): 1523-1536. 



25                                                                     Mehrdad Beykverdi et al, 2014 
Journal of Applied Science and Agriculture, 9(1) January 2014, Pages: 11-25 

 
Fairman, F.W., 1988. "Jordan Form Realization via Singular Value Decomposition", IEEE Transaction on 

Circuits and Systems, 35(11). 
Hoang Hai Hoc, 1982. "Topological optimization of networks: A nonlinear mixed integer model employing 

generalized Benders decomposition", IEEE Transactions on Automatic Control, 27(1): 164-169. 
Jae Hyung Roh, M. Shahidehpour, Yong Fu, 2007. "Market-Based coordination of transmission and 

generation capacity planning", IEEE Transactions on Power Systems, 22(4): 1406-1419. 
Jae Hyung Roh, M. Shahidehpour, Yong Fu, 2007. "Security-Constrained resource planning in electricity 

markets", IEEE Transactions on Power Systems, 22(2): 812-820. 
Jianhui Wang, M. Shahidehpour, Zuyi Li, 2008. "Security-Constrained unit commitment with volatile wind 

power generation", IEEE Transactions on Power Systems, 23(3): 1319-1327. 
Khodaei, A., M. Shahidehpour, 2010. "Transmission switching in security-constrained unit commitment", 

IEEE Transactions on Power Systems, 25(4): 1937-1945. 
Khodaei, A., M. Shahidehpour, S. Kamalinia, 2010. "Transmission switching in expansion planning", IEEE 

Transactions on Power Systems, 25(3): 1722-1733. 
Pennanen, H., A. Tolli, M. Latva-aho, 2011. "Decentralized coordinated downlink beamforming via Primal 

Decomposition", IEEE Signal Processing Letters, 18(11): 647-650. 
Shahidehpour, M., Yong Fu, 2005. "Benders decomposition: applying benders decomposition to power 

systems", IEEE Transactions on Power Systems,3(2): 20-21. 
Sifuentes, W.S., A. Vargas, 2007. "Hydrothermal scheduling using Benders decomposition: Accelerating 

techniques", IEEE Transactions on Power Systems, 22(3): 1351-1359. 
Stephen Boyd, Lieven Vandenberghe, 2009. Convex Optimization, Cambridge University Press, New York, 

7th Print. 
Tor, O.B., A.N. Guven, M. Shahidehpour, 2008. "Congestion-Driven transmission planning considering the 

impact of generator expansion", IEEE Transactions on Power Systems, 23(2): 781-789. 
Torresani, L., V. Kolmogorov, C. Rother, 2013. "A dual decomposition approach to feature 

correspondence", IEEE Transaction on Pattern Analysis and Machine Intelligence, 35(2): 259-271. 
Yong Fu, M. Shahidehpour, 2007. "Fast SCUC for large-scale power systems", IEEE Transactions on 

Power Systems, 22(4): 2144-2151. 
Yong Fu, M. Shahidehpour, Zuyi Li, 2005. "Security-Constrained Unit Commitment with AC Constraints", 

IEEE Transactions on Power Systems, 20(3): 1538-1550. 
Yong Fu, M. Shahidehpour, Zuyi Li, 2006. "AC contingency dispatch based on security-constrained unit 

commitment", IEEE Transactions on Power Systems, 21(2): 897-908. 
Zuyi Li, M. Shahidehpour, 2005. "Security-Constrained unit commitment for simultaneous clearing of 

energy and ancillary services markets", IEEE Transactions on Power Systems, 20(2): 1079-1088. 


