
AENSI Methork for Society of the Market of t

AENSI Journals

Advances in Natural and Applied Sciences

Journal home page: www.aensiweb.com/anas/index.html

Assessment of antinociceptive potentials of two Ayurvedic herbal preparations Balarishta and Sarivadyarishta

¹Inin Taznin, ²Md. Tanvir Morshed, ²M. Maruf Hassan, ²Shirin Akhter, ²Ishtiaq Ahmed, ³Sanjida Haque, ²A.B.M. Anwarul Bashar, ²Mohammed Rahmatullah

ARTICLE INFO

Article history:
Received 14 November 2013
Received in revised form 24 December 2013
Accepted 28 December 2013
Available online 15 February2014

Key words: Antinociceptive, pain, Balarishta, Sarivadyarishta

ABSTRACT

Balarishta and Sarivadyarishta are two Ayurvedic herbal formulations used by Ayurvedic practitioners in Bangladesh for treatment of rheumatic pain. The objective of the present study was to evaluate the antinociceptive potentials of these two herbal formulations in acetic acid-induced gastric pain model in Swiss albino mice. When administered orally at doses of 0.3, 1.0, and 1.5 ml per kg body weight, Balarishta caused dose-dependent and significant reductions in the number of abdominal constrictions in mice induced by intraperitoneal administration of acetic acid. At the afore-mentioned three doses, the percent reductions in the number of constrictions were, respectively, 41.4, 44.8, and 55.2. At a dose of 0.1 ml per kg body weight, Balarishta decreased the number of abdominal constrictions by 31.0%, but the result was not statistically significant. In comparison, a standard antinociceptive drug, aspirin, when administered at a dose of 200 mg per kg body weight, decreased the number of abdominal constrictions in acetic acid-induced gastric pain mice by 37.9%. Thus even at a dose of 0.3 ml per kg body weight, Balarishta demonstrated greater potency than aspirin in pain alleviation. A combination of aspirin (200 mg per kg body weight) and Balarishta (1 ml per kg body weight) reduced the number of abdominal constrictions by 58.6%. Sarivadyarishta, when administered orally at doses of 0.1, 0.3, 1.0 and 1.5 ml per kg body weight demonstrated dose-dependent and significant reductions in the number of abdominal constrictions only at the three higher doses. At these three doses, Sarivadyarishta reduced the number of constrictions, respectively, by 48.3, 55.2, and 58.6%. Like Balarishta, the percent reduction in the number of abdominal constrictions with a dose of 0.3 ml Sarivadyarishta per kg body weight was greater than that of aspirin. A combination of aspirin (200 mg per kg body weight) and Sarivadyarishta (1 ml per kg body weight) reduced the number of abdominal constrictions by 62.1%. The results not only validate the use of these two herbal preparations for alleviation of rheumatic pain, but further suggests that the two herbal formulations can be used instead of aspirin, which when taken for long time periods (as in the case of rheumatic patients) can cause gastric ulcerations.

© 2013 AENSI Publisher All rights reserved.

To Cite This Article: Inin Taznin, Md. Tanvir Morshed, M. Maruf Hassan, Shirin Akhter, Ishtiaq Ahmed, Sanjida Haque, A.B.M. Anwarul Bashar, Mohammed Rahmatullah., Assessment of antinociceptive potentials of two Ayurvedic herbal preparations Balarishta and Sarivadyarishta. **Adv. in Nat. Appl. Sci.**, 7(5): 526-531, 2013

INTRODUCTION

Ayurveda is possibly the most ancient system of medicine in India with a well-defined formulary and a philosophy which gives an explanation for the occurrence of various diseases. It is considered to have arisen more than 5,000 years ago. Mention of plants for medicinal uses can be found in Rig Veda and Atharva Veda, besides classical Ayurvedic texts like Charaka Samhita and Sushruta Samhita, the latter being written somewhere between 1,000 and 600 BC. The other three texts are much earlier than that. At present, more than 1,200 species of plants, nearly 100 minerals and over 100 animal products comprise the Ayurvedic pharmacopoeia (Sekar and Mariappan, 2008). Ayurvedic medicines include arishtas (fermented decoctions) and asavas (fermented infusions), and these are considered as unique and valuable preparations for treatment (Dhiman, 2004). Two such arishtas, namely, Balarishta and Sarivadyarishta are two Ayurvedic herbal formulations used by Ayurvedic practitioners in Bangladesh for treatment of rheumatic pain.

Corresponding Author: Dr. Mohammed Rahmatullah, Pro-Vice Chancellor and Dean, Faculty of Life Sciences University of Development Alternative House No. 78, Road No. 11A (new) Dhanmondi, Dhaka-1205 Bangladesh

Tel: +88-01715032621; Fax: +88-02-815739; E-mail: rahamatm@hotmail.com

¹Department of Pharmacy, North South University, Bashundhara, Dhaka-1229, Bangladesh

²Faculty of Life Sciences, University of Development Alternative, Dhanmondi, Dhaka-1209, Bangladesh

³Faculty of Science, Engineering and Technology, Department of Pharmacy, Bangladesh University, Iqbal Road, Mohammadpur, Dhaka, Bangladesh

Advances in Natural and Applied Sciences, 7(5) December 2013, Pages: 526-531

We had been conducting ethnomedicinal surveys among the folk and tribal medicinal practitioners of Bangladesh for the last several years (Rahmatullah *et al.*, 2009a-c; Rahmatullah *et al.*, 2010a-g; Rahmatullah *et al.*, 2011a,b; Rahmatullah *et al.*, 2012a-d). From the information obtained from the traditional healers, further studies are conducted on selected floral species towards evaluation of their antinociceptive, antihyperglycemic, and cytotoxic potential (Anwar *et al.*, 2010; Jahan *et al.*, 2010; Khan *et al.*, 2010; Mannan *et al.*, 2010; Rahman *et al.*, 2010; Rahmatullah *et al.*, 2010h; Shoha *et al.*, 2010; Ali *et al.*, 2011; Barman *et al.*, 2011; Hossan *et al.*, 2011; Jahan *et al.*, 2011; Rahman *et al.*, 2011; Sutradhar *et al.*, 2011; Ahmed *et al.*, 2012; Arefin *et al.*, 2012; Haque *et al.*, 2012; Sathi *et al.*, 2012). These studies have recently been extended to include traditional medicines from other traditional medicinal systems from Bangladesh, as well as other countries, to evaluate antinociceptive and antihyperglycemic potential of various herbal products. The objective of the present study was to evaluate the antinociceptive potential of Balarishta and Sarivadyarishta in acetic acid-induced gastric pain model in mice.

MATERIALS AND METHODS

Balarishta and Sarivadyarishta were obtained from Sadhana Oushadhaloy Ltd., Dhaka, Bangladesh, which is one of the oldest Ayurvedic product manufacturers in the country. The contents of Balarishta (liquid preparation), as given on the bottle, were per 5 ml, 1.2 mg of roots of *Sida cordifolia* L. (Malvaceae; Ayurvedic name: Berela), 1.2 mg of *Withania somnifera* (L.) Dunal (Solanaceae; Ayurvedic name: Ashwagondha), 2.4 mg of *Lilium polyphyllum* D. Don. (Liliaceae; Ayurvedic name: Kshir kakoli), and 2.4 mg of *Jatropha gossypifolia* L. (Euphorbiaceae; Ayurvedic name: Eranda). The product was described on the bottle to prevent rheumatism, to decrease fever, and decrease general weakness. The manufacturing license number was given as Ayu-058. Dosage as given on the bottle was 4 teaspoonfuls with equal amount of water to be taken daily. The contents of Sarivadyarishta (liquid preparation), as given on the bottle, were per 5 ml, 0.08g *Ichnocarpus frutescens* R. Br. (Apocynaceae; Ayurvedic name: Shyam lota), 0.08g *Hemidesmus indicus* (L.) W.T. Aiton (Apocynaceae; Ayurvedic name: Ananto mul), and 0.08g *Tinospora cordifolia* (Willd.) Hook.f. & Thomson (Menispermaceae; Ayurvedic name: Guduchi). The product was described on the bottle to treat every form of rheumatism. The manufacturing license number was given as Ayu-058. Dosage as given on the bottle was 2-4 teaspoonfuls with equal amount of water to be taken twice daily after meal.

Chemicals.

Glacial acetic acid was obtained from Sigma Chemicals, USA; aspirin was obtained from Square Pharmaceuticals Ltd., Bangladesh.

Animals:

In the present study, Swiss albino mice (male), which weighed between 22-25 g were used. The animals were obtained from International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B). All animals were kept under ambient temperature with 12h light followed by a 12h dark cycle. The animals were acclimatized for three days prior to actual experiments. The study was conducted following approval by the Institutional Animal Ethical Committee of University of Development Alternative, Dhaka, Bangladesh.

Antinociceptive activity:

Antinociceptive activity of Balarishta and Sarivadyarishta was examined using previously described procedures (Shanmugasundaram and Venkataraman, 2005). Briefly, mice were divided into twelve groups of five mice each. Group 1 served as control and was administered vehicle only. Group 2 was orally administered the standard antinociceptive drug aspirin at a dose of 200 mg per kg body weight. Groups 3-6 were administered Balarishta at doses of 0.1, 0.3, 1.0, and 1.5 ml per kg body weight, respectively. Group 7 was administered a combination of aspirin and Balarishta at doses of 200 mg and 1.0 ml per kg body weight, respectively. Groups 8-11 were administered Sarivadyarishta at doses of 0.1, 0.3, 1.0, and 1.5 ml per kg body weight, respectively. Group 12 was administered a combination of aspirin and Sarivadyarishta at doses of 200 mg and 1.0 ml per kg body weight, respectively. All mice were individually weighed and dose determined on the basis of individual weight. Following a period of 60 minutes after oral administration of standard drug or extract, all mice were intraperitoneally injected with 1% acetic acid at a dose of 10 ml per kg body weight, which causes abdominal constrictions due to gastric pain from acetic acid. A period of 15 minutes was given to each animal to ensure bio-availability of acetic acid, following which period, the number of abdominal constrictions was counted for 10 min.

Statistical analysis:

Experimental values are expressed as mean \pm SEM. Independent Sample t-test was carried out for statistical comparison. Statistical significance was considered to be indicated by a p value < 0.05 in all cases.

Advances in Natural and Applied Sciences, 7(5) December 2013, Pages: 526-531

RESULTS AND DISCUSSION

When administered orally at doses of 0.3, 1.0, and 1.5 ml per kg body weight, Balarishta caused dosedependent and significant reductions in the number of abdominal constrictions in mice induced by intraperitoneal administration of acetic acid. At the afore-mentioned three doses, the percent reductions in the number of constrictions were, respectively, 41.4, 44.8, and 55.2. At a dose of 0.1 ml per kg body weight, Balarishta decreased the number of abdominal constrictions by 31.0%, but the result was not statistically significant. In comparison, a standard antinociceptive drug, aspirin, when administered at a dose of 200 mg per kg body weight, decreased the number of abdominal constrictions in acetic acid-induced gastric pain mice by 37.9%. Thus even at a dose of 0.3 ml per kg body weight, Balarishta demonstrated greater potency than aspirin in pain alleviation. A combination of aspirin (200 mg per kg body weight) and Balarishta (1 ml per kg body weight) reduced the number of abdominal constrictions by 58.6%. Sarivadyarishta, when administered orally at doses of 0.1, 0.3, 1.0 and 1.5 ml per kg body weight demonstrated dose-dependent and significant reductions in the number of abdominal constrictions only at the three higher doses. At these three doses, Sarivadyarishta reduced the number of constrictions, respectively, by 48.3, 55.2, and 58.6%. Like Balarishta, the percent reduction in the number of abdominal constrictions with a dose of 0.3 ml Sarivadyarishta per kg body weight was greater than that of aspirin. A combination of aspirin (200 mg per kg body weight) and Sarivadyarishta (1 ml per kg body weight) reduced the number of abdominal constrictions by 62.1%. The results are shown in Table 1.

The anti-inflammatory effect of Balarishta has been reported against cotton pellet induced granuloma in albino rats (Alam et al., 1998). As mentioned before, the formulation consisted of four plants, namely Sida cordifolia, Withania somnifera, Lilium polyphyllum, and Jatropha gossypifolia. The analgesic and antiinflammatory activities of Sida cordifolia has been reported (Sutradhar et al., 2006). Withaferin A is a component isolated and described from the plant, Withania somnifera, with analgesic and antipyretic properties (Sabina et al., 2009). The plant also reportedly contains beta-sitosterol (Duke, 1992), which may explain its analgesic properties (Santos et al., 2011). The use of the Plant, Lilium polyphyllum, for rheumatalgia has been reported. The plant is one of the plants among the eight plant combination known as 'Astavarga' plant in Ayurvedic literature (Balkrishna et al., 2012). Moreover, one of the chemical components of the plant is linalool, with reported antinociceptive properties (Quintans-Júnior et al., 2013). The analgesic and anti-inflammatory activities of Jatropha gossypifolia in experimental animal models has also been demonstrated (Panda et al., 2009). It can then be expected that the four plants in combination would produce a strong effect in alleviating pain, which has been substantiated in the present study.

The other Ayurvedic formulation tested for antinociceptive activity in the present study was Sarivadyarishta, which contained the plants Ichnocarpus frutescens, Hemidesmus indicus, and Tinospora cordifolia. The anti-inflammatory and analgesic activity of roots of *Ichnocarpus frutescens* has been shown in acute and chronic phase inflammation models in rats (Pandurangan et al., 2008). Hydro-alcoholic fraction of Hemidesmus indicus root has been shown to give analgesic, antipyretic and anti-inflammatory effect in experimental animals, which included testing for analgesic activity through the acetic acid-induced writhing response (Farook et al., 2011). The roots of the plant, besides other constituents, also reportedly contain alphaamyrin, beta-amyrin and beta-sitosterol (Duke, 1992). Methanol leaf extract of the plant Ligustrum morrisonense containing amyrin has been shown to demonstrate analgesic activity in rodents (Wu et al., 2011). Both alpha- and beta-amyrin has been shown to inhibit inflammatory and neuropathic persistent pain in mice through activation of cannabinoid receptors (da Silva et al., 2011). Methanol extract of stem bark of Cariniana rubra containing alpha- and beta-amyrin, and beta-sitosterol reportedly showed antinociceptive effects in acetic acid-induced gastric pain models (Santos et al., 2011). Analgesic effect has also been observed with an herbal formulation containing stems of Tinospora cordifolia (Gupta et al., 2013). Thus, once again, scientific reports indicate that the combination of the three plants can produce together a strong effect in alleviation of pain, which has been validated in the present study.

Ayurvedic formulations are time-tested formulations for they have been used for thousands of years. As more and more researchers are turning towards traditional formulations for discovery of better medicines, scientific validation of Ayurvedic formulations can provide the basis for newer and more effective drugs. Moreover, scientific validations of these formulations can lead to the use of the formulations directly and with confidence. Pain is experienced for a variety of causes by millions of people throughout the world on a daily basis. Moreover, diseases like rheumatism or certain forms of cancer can cause chronic pain, and for which diseases there are only symptomatic cures in allopathic medicine. However, pain killing drugs in allopathic medicine like aspirin or paracetamol can, because of over-dosage or long-term use, cause gastric ulcerations or hepatotoxicity. Ayurvedic formulations can be effective substitutes for allopathic medicines in these types of diseases, provided scientific studies demonstrate that no toxic effects occur with the administration of these formulations. On the other hand, the use of Ayurvedic formulations for thousands of years suggest that the formulations are both effective and may not have serious toxic effects.

Advances in Natural and Applied Sciences, 7(5) December 2013, Pages: 526-531

Financial disclosure:

Authors of this study have no financial interest in any of the product(s) or manufacturer(s) mentioned in this article.

Table 1: Antinociceptive effects of Balarishta and Sarivadyarishta in the acetic acid-induced gastric pain model mice.

Treatment	Dose (mg or ml/kg body	Mean number of	% inhibition
	weight)	abdominal constrictions	
Control (Group 1)	10 ml	5.8 ± 0.86	-
Aspirin (Group 2)	200 mg	3.6 ± 0.73	37.9*
Balarishta (Group 3)	0.1 ml	4.0 ± 1.05	31.0
Balarishta (Group 4)	0.3 ml	3.4 ± 0.68	41.4*
Balarishta (Group 5)	1.0 ml	3.2 ± 0.83	44.8*
Balarishta (Group 6)	1.5 ml	2.6 ± 0.40	55.2*
Balarishta + Aspirin (Group 7)	1.0 ml + 200 mg	2.4 ± 0.24	58.6*
Sarivadyarishta (Group 8)	0.1 ml	6.0 ± 0.89	-
Sarivadyarishta (Group 9)	0.3 ml	3.0 ± 0.89	48.3*
Sarivadyarishta (Group 10)	1.0 ml	2.6 ± 0.68	55.2*
Sarivadyarishta (Group 11)	1.5 ml	2.4 ± 0.40	58.6*
Sarivadyarishta + Aspirin (Group 12)	1.0 ml + 200 mg	2.2 ± 0.37	62.1*

All administrations (aspirin, Balarishta and Sarivadyarishta) were made orally. Values represented as mean \pm SEM, (n=5); *P < 0.05; significant compared to control.

REFERENCES

Ahmed, T., K.M.S.U. Imam, S. Rahman, S.M. Mou, M.S. Choudhury, M.J. Mahal, S. Jahan, M.S. Hossain and M. Rahmatullah, 2012. Antihyperglycemic and antinociceptive activity of Fabaceae family plants – an evaluation of *Mimosa pigra* L. stems. Advances in Natural and Applied Sciences, 6: 1490-1495.

Alam, M., K.K.S. Dasan, S. Thomas and J. Suganthan, 1998. Anti-inflammatory potential of Balarishta and Dhanvantara Gutika in albino rats. Ancient Science of Life, 17: 305-312.

Ali, M., K. Nahar, M. Sintaha, H.N. Khaleque, F.I. Jahan, K.R. Biswas, A. Swarna, M.N. Monalisa, R. Jahan and M. Rahmatullah, 2011. An evaluation of antihyperglycemic and antinociceptive effects of methanol extract of *Heritiera fomes* Buch.-Ham. (Sterculiaceae) barks in Swiss albino mice. Advances in Natural and Applied Sciences, 5: 116-121.

Anwar, M.M., M.A. Kalpana, B. Bhadra, S. Rahman, S. Sarker, M.H. Chowdhury and M. Rahmatullah, 2010. Antihyperglycemic activity and brine shrimp lethality studies on methanol extract of *Cajanus cajan* (L.) Millsp. leaves and roots. Advances in Natural and Applied Sciences, 4: 311-316.

Arefin, S.A., S. Rahman, S. Rahman, M. Akter, M. Munmun, M.A. Kalpana, S. Jahan, M.S.A. Bhuiyan and M. Rahmatullah, 2012. Scientific validation of folk medicinal uses in Bangladesh of *Piper betle* leaves to alleviate pain and lower blood sugar. Advances in Natural and Applied Sciences, 6: 1496-1502.

Balkrishna, A., A. Srivastava, R.K. Mishra, S.P. Patel, R.K. Vashistha, A. Singh, V. Jadon and P. Saxena, 2012. Astavarga plants – threatened medicinal herbs of the North-West Himalaya. International Journal of Medicinal and Aromatic Plants, 2: 661-676.

Barman, M.R., Md. Saleh Uddin, S. Akhter, Md.N. Ahmed, Z. Haque, S. Rahman, F. Mostafa, M. Zaman, F.A. Noor and M. Rahmatullah, 2011. Antinociceptive activity of methanol extract of *Areca catechu* L. (Arecaceae) stems and leaves in mice. Advances in Natural and Applied Sciences, 5: 223-226.

Da Silva, K.A., A.F. Paszcuk, G.F. Passos, E.S. Silva, A.F. Bento, F.C. Meotti and J.B. Calixto, 2011. Activation of cannabinoid receptors by the pentacyclic triterpene \Box , \Box amyrin inhibits inflammatory and neuropathic persistent pain in mice. Pain, 152: 1872-1887.

Dhiman, A.K., 2004. Common Drug Plants and Ayurvedic Remedies. Reference Press, New Delhi.

Duke, J.A., 1992. Handbook of phytochemical constituents of GRAS herbs and other economic plants. Boca raton, FL, CRC Press.

Farook, S.M., W.C. Atlee, S. Kannan, S. Kumar and M.S. Davey, 2011. Assessment of analgesic, anti-pyretic and anti-inflammatory activity of hydro-alcoholic fraction of *Hemidesmus indicus* root in experimental animals. Der Pharmacia Lettre, 3: 448-453.

Gupta, M., D. Banerjee and A. Mukherjee, 2013. Studies of anti inflammatory, antipyretic and analgesic effects of aqueous extract of traditional herbal drug on rodents. International Research Journal of Pharmacy, 4: 113-120.

Haque, M.M., M.S. Choudhury, M.S. Hossain, M.A. Haque, K. Debnath, S. Hossain, S.M. Mou, I. Malek, and M. Rahmatullah, 2012. Evaluation of antihyperglycemic and antinociceptive properties of leaves of *Calotropis gigantea* R.Br. (Asclepiadaceae) – a medicinal plant of Bangladesh. Advances in Natural and Applied Sciences, 6: 1508-1514.

Hossan, A.N.M.F., F. Zaman, M.R. Barman, S. Khatoon, M. Zaman, F. Khatun, T. Mosaiab, F. Mostafa, M. Sintaha, F. Jamal and M. Rahmatullah, 2011. Antinociceptive activity of *Xanthium indicum* J. Koenig ex Roxb.

(Asteraceae) leaves and *Leucas aspera* (Willd.) Link (Lamiaceae) whole plants. Advances in Natural and Applied Sciences, 5: 214-217.

Jahan, F.I., M.S. Hossain, A.A. Mamun, M.T. Hossain, S. Seraj, A.R. Chowdhury, Z. Khatun, N.Z. Andhi, M.H. Chowdhury and M. Rahmatullah, 2010. An evaluation of antinociceptive effect of methanol extracts of *Desmodium gangeticum* (L.) DC. stems and *Benincasa hispida* (Thunb.) Cogn. leaves on acetic acid-induced gastric pain in mice. Advances in Natural and Applied Sciences, 4: 365-369.

Jahan, T., S. Shahreen, J. Banik, F. Islam, A.A. Mamun, R. Das, S. Rahman, S. Seraj, R. Jahan and M. Rahmatullah, 2011. Antinociceptive activity studies with methanol extracts of *Ficus hispida* L.f. leaves and fruits in Swiss albino mice. Advances in Natural and Applied Sciences, 5: 131-135.

Jahan, F.I., M.S. Hossain, A.A. Mamun, M.T. Hossain, S. Seraj, A.R. Chowdhury, Z. Khatun, N.Z. Andhi, M.H. Chowdhury and M. Rahmatullah, 2010. An evaluation of antinociceptive effect of methanol extracts of *Desmodium gangeticum* (L.) DC. stems and *Benincasa hispida* (Thunb.) Cogn. leaves on acetic acid-induced gastric pain in mice. Advances in Natural and Applied Sciences, 4: 365-369.

Jahan, T., S. Shahreen, J. Banik, F. Islam, A.A. Mamun, R. Das, S. Rahman, S. Seraj, R. Jahan and M. Rahmatullah, 2011. Antinociceptive activity studies with methanol extracts of *Ficus hispida* L.f. leaves and fruits in Swiss albino mice. Advances in Natural and Applied Sciences, 5: 131-135.

Panda, B.B., K. Gaur, M.L. Kori, L.K. Tyagi, R.K. Nema, C.S. Sharma and A.K. Jain, 2009. Anti-inflammatory and analgesic activity of *Jatropha gossypifolia* in experimental animal models. Global Journal of Pharmacology, 3: 1-5.

Pandurangan, A., R.L. Khosa and S. Hemalatha, 2008. Anti-inflammatory and analgesic activity of roots of *Ichnocarpus frutescens*. Pharmacologyonline, 1: 392-399.

Quintans-Júnior, L.J., R.S.S. Barreto, P.P. Menezes, J.R.G.S. Almeida, A.F.S.C. Viana, R.C.M. Oliveira, A.P. Oliveira, D.P. Gelain, W. de L. Júnior and A.A.S. Araújo, 2013. Beta-cyclodextrin-complexed (-)-linalool produces antinociceptive effect superior to that of (-)-linalool in experimental pain protocols. Basic & Clinical Pharmacology & Toxicology, 113: 167-172.

Rahman, M., A. Siddika, B. Bhadra, S. Rahman, B. Agarwala, M.H. Chowdhury and M. Rahmatullah, 2010. Antihyperglycemic activity studies on methanol extract of *Petrea volubilis* L. (Verbenaceae) leaves and *Excoecaria agallocha* L. (Euphorbiaceae) stems. Advances in Natural and Applied Sciences, 4: 361-364.

Rahman, M.M., M.N. Hasan, A.K. Das, M.T. Hossain, R. Jahan, M.A. Khatun and M. Rahmatullah, 2011. Effect of *Delonix regia* leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. African Journal of Traditional, Complementary and Alternative Medicines, 8: 34-36.

Rahmatullah, M., D. Ferdausi, M.A.H. Mollik, M.N.K. Azam, M.T. Rahman and R. Jahan, 2009a. Ethnomedicinal Survey of Bheramara Area in Kushtia District, Bangladesh. American Eurasian Journal of Sustainable Agriculture, 3: 534-541.

Rahmatullah, M., A. Noman, M.S. Hossan, M.H. Rashid, T. Rahman, M.H. Chowdhury and R. Jahan, 2009b. A survey of medicinal plants in two areas of Dinajpur district, Bangladesh including plants which can be used as functional foods. American Eurasian Journal of Sustainable Agriculture, 3: 862-876.

Rahmatullah, M., A.K. Das, M.A.H. Mollik, R. Jahan, M. Khan, T. Rahman and M.H. Chowdhury, 2009c. An Ethnomedicinal Survey of Dhamrai Sub-district in Dhaka District, Bangladesh. American Eurasian Journal of Sustainable Agriculture, 3: 881-888.

Rahmatullah, M., D. Ferdausi, M.A.H. Mollik, R. Jahan, M.H. Chowdhury and W.M. Haque, 2010a. A Survey of Medicinal Plants used by Kavirajes of Chalna area, Khulna District, Bangladesh. African Journal of Traditional, Complementary and Alternative Medicines, 7: 91-97.

Rahmatullah, M., M.A. Khatun, N. Morshed, P.K. Neogi, S.U.A. Khan, M.S. Hossan, M.J. Mahal and R. Jahan, 2010b. A randomized survey of medicinal plants used by folk medicinal healers of Sylhet Division, Bangladesh. Advances in Natural and Applied Sciences, 4: 52-62.

Rahmatullah, M., A.A.B.T. Kabir, M.M. Rahman, M.S. Hossan, Z. Khatun, M.A. Khatun and R. Jahan, 2010c. Ethnomedicinal practices among a minority group of Christians residing in Mirzapur village of Dinajpur District, Bangladesh. Advances in Natural and Applied Sciences, 4: 45-51.

Rahmatullah, M., M.A. Momen, M.M. Rahman, D. Nasrin, M.S. Hossain, Z. Khatun, F.I. Jahan, M.A. Khatun and R. Jahan, 2010d. A randomized survey of medicinal plants used by folk medicinal practitioners in Daudkandi sub-district of Comilla district, Bangladesh. Advances in Natural and Applied Sciences, 4: 99-104.

Rahmatullah, M., M.A.H. Mollik, M.N. Ahmed, M.Z.A. Bhuiyan, M.M. Hossain, M.N.K. Azam, S. Seraj, M.H. Chowdhury, F. Jamal, S. Ahsan and R. Jahan, 2010e. A survey of medicinal plants used by folk medicinal practitioners in two villages of Tangail district, Bangladesh. American Eurasian Journal of Sustainable Agriculture, 4: 357-362.

Rahmatullah, M., M.A.H. Mollik, M.K. Islam, M.R. Islam, F.I. Jahan, Z. Khatun, S. Seraj, M.H. Chowdhury, F. Islam, Z.U.M. Miajee and R. Jahan, 2010f. A survey of medicinal and functional food plants used by the folk medicinal practitioners of three villages in Sreepur Upazilla, Magura district, Bangladesh. American Eurasian Journal of Sustainable Agriculture, 4: 363-373.

Rahmatullah, M., R. Jahan, M.A. Khatun, F.I. Jahan, A.K. Azad, A.B.M. Bashar, Z.U.M. Miajee, S. Ahsan, N. Nahar, I. Ahmad and M.H. Chowdhury, 2010g. A pharmacological evaluation of medicinal plants used by folk medicinal practitioners of Station Purbo Para Village of Jamalpur Sadar Upazila in Jamalpur district, Bangladesh. American Eurasian Journal of Sustainable Agriculture, 4: 170-195.

Rahmatullah, M., Sk.Md.I. Sadeak, S.C. Bachar, Md.T. Hossain, Abdullah-al-Mamun, Montaha, N. Jahan, M.H. Chowdhury, R. Jahan, D. Nasrin, M. Rahman and S. Rahman, 2010h. Brine shrimp toxicity study of different Bangladeshi medicinal plants. Advances in Natural and Applied Sciences, 4: 163-173.

Rahmatullah, M., T. Ishika, M. Rahman, A. Swarna, T. Khan, M.N. Monalisa, S. Seraj, S.M. Mou, M.J. Mahal and K.R. Biswas, 2011a. Plants prescribed for both preventive and therapeutic purposes by the traditional healers of the Bede community residing by the Turag River, Dhaka district. American Eurasian Journal of Sustainable Agriculture, 5: 325-331.

Rahmatullah, M., M.N.K. Azam, M.M. Rahman, S. Seraj, M.J. Mahal, S.M. Mou, D. Nasrin, Z. Khatun, F. Islam and M.H. Chowdhury, 2011b. A survey of medicinal plants used by Garo and non-Garo traditional medicinal practitioners in two villages of Tangail district, Bangladesh. American Eurasian Journal of Sustainable Agriculture, 5: 350-357.

Rahmatullah, M., and K.R. Biswas, 2012a. Traditional medicinal practices of a Sardar healer of the Sardar (Dhangor) community of Bangladesh. Journal of Alternative and Complementary Medicine, 18: 10-19.

Rahmatullah, M., A. Hasan, W. Parvin, M. Moniruzzaman, A. Khatun, Z. Khatun, F.I. Jahan and R. Jahan, 2012b. Medicinal plants and formulations used by the Soren clan of the Santal tribe in Rajshahi district, Bangladesh for treatment of various ailments. African Journal of Traditional, Complementary and Alternative Medicines, 9: 342-349.

Rahmatullah, M., Z. Khatun, A. Hasan, W. Parvin, M. Moniruzzaman, A. Khatun, M.J. Mahal, M.S.A. Bhuiyan, S.M. Mou and R. Jahan, 2012c. Survey and scientific evaluation of medicinal plants used by the Pahan and Teli tribal communities of Natore district, Bangladesh. African Journal of Traditional, Complementary and Alternative Medicines, 9: 366-373.

Rahmatullah, M., M.N.K. Azam, Z. Khatun, S. Seraj, F. Islam, M.A. Rahman, S. Jahan, M.S. Aziz and R. Jahan, 2012d. Medicinal plants used for treatment of diabetes by the Marakh sect of the Garo tribe living in Mymensingh district, Bangladesh. African Journal of Traditional, Complementary and Alternative Medicines, 9: 380-385.

Sabina, E.P., S. Chandel and M.K. Rasool, 2009. Evaluation of analgesic, antipyretic and ulcerogenic effect of Withaferin A. International Journal of Integrative Biology, 6: 52-56.

Santos, E.N., J.C. Lima, V.F. Noldin, V. Cechinel-Filho, V.S. Rao, E.F. Lima, G. Schmeda-Hirschmann, P.T.Jr. Sousa and D.T. Martins, 2011. Anti-inflammatory, antinociceptive, and antipyretic effects of methanol extract of *Cariniana rubra* stem bark in animal models. Anais da Academia Brasileira de Ciências, 83: 557-566.

Sathi, S.I., S. Rahman, M.A. Shoyeb, K. Debnath, M.A. Haque, Z. Khatun, M.S. Hossain, M.M.R. Shelley and M. Rahmatullah, 2012. A preliminary study of the antihyperglycemic and antinociceptive potential of *Tagetes patula* L. (Asteraceae) stems. Advances in Natural and Applied Sciences, 6: 1515-1520.

Sekar, S., and S. Mariappan, 2008. Traditionally fermented biomedicines, *arishtas* and *asavas* from Ayurveda. Indian Journal of Traditional Knowledge, 7: 548-556.

Shanmugasundaram, P. and S. Venkataraman, 2005. Anti-nociceptive activity of *Hygrophilous auriculata* (Schum) Heine. African Journal of Traditional, Complementary and Alternative Medicines, 2: 62-69.

Shoha, J., H. Jahan, A.A. Mamun, M.T. Hossain, S. Ahmed, M.M. Hossain, S. Rahman, R. Jahan and M. Rahmatullah, 2010. Antihyperglycemic and antinociceptive effects of *Curcuma zedoaria* (Christm.) Roscoe leaf extract in Swiss albino mice. Advances in Natural and Applied Sciences, 5: 6-8.

Sutradhar, R.K., A.K.M.M. Rahman, M.U. Ahmad, B.K. Datta, S.C. Bachar and A. Saha, 2006. Analgesic and anti-inflammatory activities of *Sida cordifolia* Linn. Indian Journal of Pharmacology, 38: 207-208.

Sutradhar, B.K., M.J. Islam, M.A. Shoyeb, H.N. Khaleque, M. Sintaha, F.A. Noor, W. Newaz and M. Rahmatullah, 2011. An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of *Coccinia grandis* (L.) J. Voigt. (Cucurbitaceae) leaves in Swiss albino mice. Advances in Natural and Applied Sciences, 5: 1-5.

Wu, C.R., W.H. Lin, Y.T. Lin, C.L. Wen, H. Ching and L.W. Lin, 2011. Analgesic and anti-inflammatory property of the methanol extract from *Ligustrum morrisonense* leaves in rodents. American Journal of Chinese Medicine, 39: 335-348.