
Advances in Natural and Applied Sciences, 5(1): 26-33, 2011
ISSN 1995-0772

This is a refereed journal and all articles are professionally screened and reviewed

ORIGINAL ARTICLE

26

Corresponding Author: Hossein Abolghasemi, Center for Separation Processes Modeling and Nano-Computations
School of Chemical Engineering, University of Tehran, Tehran, Iran.
E-mail: abolghasemi.ha@gmail.com, Tel: +98 21 66954048, Fax: +98 21 66954051.

Adomian Decomposition Method to Study Mass Transfer from a Horizontal Flat Plate
Subject to Laminar Fluid Flow

Hooman Fatoorehchi and Hossein Abolghasemi

Center for Separation Processes Modeling and Nano-Computations School of Chemical Engineering, University
of Tehran, Tehran, Iran.

Hooman Fatoorehchi and Hossein Abolghasemi: Adomian Decomposition Method to Study Mass
Transfer from a Horizontal Flat Plate Subject to Laminar Fluid Flow

ABSTRACT

Adomian Decomposition Method (ADM) was utilized to tackle a famous and important problem
encountered in chemical engineering, viz, mass transfer during the contact of a solid slab with an overhead
flowing fluid. After a brief presentation of the governing mathematical model, ADM was exploited to
investigate the solution. Following ADM procedure, a recurrence relation was found to establish the Adomian
series form of the solution. Once the final obtained series solution was compared with the Taylor series
expansion to an analytical (exact) solution of the problem (obtained via the Combination of Variables method
ahead), it was interesting to prove that ADM had led to the identical exact solution.

Key words: Adomian Decomposition Method, Laminar Mass Transfer, Concentration Boundary Layer,
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Introduction

Adomian Decomposition Method (ADM) was developed and initially introduced by the acknowledged
mathematician George Adomian in mid-80s (Adomian, 1984) and basics of it has been fully covered (Adomian,
1994, 1998; Wazwaz, 2002). Being powerful, effective, and able to handle an extensive class of linear,
nonlinear differential/integral equations with less mathematical complexity, ADM has gained intense popularity
among numerous researchers since then. In this regard and just for the sake of exemplification, we make
reference to a limited number of extensions/modifications made to ADM. Wazwaz and El-Sayed performed
modifications to improve the original ADM technique (Wazwaz, 1999; Wazwaz and El-Sayed, 2001). The
convergence (and its order) of ADM was explored (Babolian and Biazar, 2002). Ibijola et al. and Casasús and
Al-Hayani provided insights in application of ADM to solution of ODEs (Ibijola et al., 2008; Casasús and Al-
Hayani, 2001). Pamuk successfully extended ADM to linear and nonlinear heat equations (Pamuk, 2005).
Wazwaz and Gorguis achieved analytical solution of Fisher’s equation via ADM (Wazwaz and Gorguis, 2004).
Bougoffa and Bougoffa proposed ADM to solve coupled linear and nonlinear ODEs of first and second order
(Bougoffa and Bougoffa, 2006). Adjedj exploited ADM to model HIV immune response (Adjedj, 1999). Layeni
and Akinola managed to use ADM in solving the mathematical model (a PDE) pertaining to a water filtration
process (Layeni and Akinola, 2008).

In this paper, we present a simplified model for mass transfer phenomenon from a horizontal flat plate
fixed along a laminar fluid flow and then extend ADM to solution of the model. Subsequently, it is showed
that ADM leads to an analytical solution identical to the one resulted from Combination of Variables Method
which is an exact method.

Problem Description:

A schematic illustration of the problem is depicted in Figure 1.
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Fig. 1: A schematic image of the problem. Molecules of species A from the solid slab diffuses along the
y-axis to be drifted away by the fluid stream flow of the hydrodynamic boundary layer.

Mass transfer under the mentioned settings/conditions is often encountered in the realm of chemical
engineering (Mori et al., 1991; Nassif et al., 1995; Sharma and Rahman, 2002). The following realistic
assumptions were made to set a mathematical model for the phenomenon.

Model Assumptions:

1- The fluid flow is laminar and steady state situation is reached.
2- The solid surface is so smooth that no ripples or surface waves exist.
3- The fluid is Newtonian and, as a result, has velocity distribution.
4- Mass transfer rates are so small that no sharp density gradients occur along the x-axis, causing the natural

convection be negligible.
5- The Flow is one-dimensional, so there is no mass transfer due to bulk convection along the y and z axes.
6- Diffusional mass transfer in all directions is negligible except for that of in y-axis direction. 
All over the surface has a constant interface concentration of species A, namely, CA.
Physical properties such as mass diffusivity are uniformly constant.
No reactions take place between the surface and fluid.
 The end effects are neglected.
 Schmidt number is assumed to be larger than 1 (Sc>1).

Formulation of Model:
Mass balance for species A over an infinitesimal element based on the Cartesian coordinates while

applying the mentioned assumptions leads to:
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Assuming a third degree polynomial form for velocity distribution inside velocity boundary layer yields

(Holman, 2002):
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For any point inside concentration boundary layer thickness with any arbitrary height of y, y<δ making
y/δ less than unity. Accordingly, the cubic term of Eq. (2) can be neglected with respect to the linear term
for the sake of simplification, approximating that:
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It is worthwhile to mention that such a simplification becomes very accurate for the cases with the fluid
having Schmidt numbers larger than unity (i.e. when hydrodynamic boundary layer thickness δ is larger than
concentration boundary layer thickness δc, which is the domain for y, at any given x. Such a deduction is
inferred from the analogy between heat and mass transfer, knowing that Prandtl number is heat transfer analog
of Schmidt number (Holman, 2002).

From Fluid Mechanics it can be proved that velocity boundary layer thickness for laminar flow over flat
plates is governed by (Bird et al., 2001):
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Combining Eq. (4), (3) and (1) yields:
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By taking                         , we have:
1.5

0.5

3

9.28

u
cte

Dv
  

  (6)
0.5

yy xC x yC 

with below boundary conditions

BC1: 0( , ) AC x C 

BC2: ( ,0) AiC x C

BC3:   (7)0( , ) AC x C 

Analysis by ADM:
The eq. (6) can be written in an operator form by

  (8)0.5
y xL C x yL C 

where the differential operators Lx and Ly are given by
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and therefore the inverse operators     and     are defined by1
xL 1

yL
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applying the inverse operator      to both side of eq. (8) gives

1
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using boundary condition no. (2) while assuming                    we obtain( ) ( ,0)yf x u x
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using Adomian decomposition series, it follows that
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according to decomposition method the recursive relation is found as
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consequently, we obtain the five first iterations as:
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and a general relation can be written as:
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where Am,n is calculated through the recursive formula as follows
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In the next step, we have to find a representative for f(x) somehow. Since f(x) is not directly given by the
problem, we have to set an equation for it with the help of known parameters. As a very straightforward and
rough estimation from the definition of derivative of the function C with respect to y one can write
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As noted before, the laminar momentum (or hydrodynamic) boundary layer thickness can be obtained from
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It is known that when D, the diffusion coefficient or diffusivity, goes to infinity, the concentration of
component A must become uniformly equal all over the plate ( i.e. CA(x,y)=CAi). As a consequence, f(x) and
its higher derivatives shall become zero once D inclines towards infinity. Thus, a proportion coefficient like

λ should be multiplied to the right side of relation no. (24) having the characteristic of            . Moreover,lim 0
D


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it is wise to add a correction or tuning factor to the relation and not to lose generality, we propose that every
order of derivative of f(x) have its own correction factor, namely, wi. Applying these two aforesaid factors to
the relation no. (24), the equation below is achieved.
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Substituting eq. (25) into eq. (20) gives
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and therefore
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As proved in Appendix A, an analytical (exact) solution to the problem can be obtained, through
combination of variables method, as below:
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substituting the integrand with its Taylor’s expansion series we get
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and performing the integration within the limits it is obtained that
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and finally
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Comparing the eq. (39), which is the exact solution, with the eq. (34), which is yielded from Adomian
decomposition method, easily it is deduced that
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As anticipated and discussed before, it is obvious from eq. (39) that             .lim 0
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As demonstrated above, the Adomian decomposition method has led to the exact solution to the PDE
introduced in this paper.

Conclusion:

The efficient and powerful method of Adomian Decomposition was successfully applied to solve a problem
of practical significance in chemical engineering, namely, mass transfer from a flat slab toward a fluid flowing
over it. It was proved that ADM resulted in the exact solution cross-checked by the analytical method of
Combination of Variables. Due to its simplicity as well as precision, ADM is recommended for solution of
PDEs arising in engineering/scientific modeling problems.

Appendix A (solution of problem by Combination of Variables Method):
A proposed combination of the variables x and y is as follows:
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Using the chain rule of differentiation in Calculus, it yields:
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Substituting Eq. (A.2) and (A.4) into Eq. (6) results in:
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By letting n=1 the Eq. (A.5) reduces to:
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According to Eq. (A.1)                         , this transforms Eq. (A.6) to:2 2 2 2 2n m my x y x  
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in which A is an arbitrary integration constant.
Integrating Eq. (A.10) from the plate surface, at any x and y=0 which forces η=0, to an arbitrary position

above the plate, that is any x and y or any η, yields:
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Dividing Eq. (A.11) by Eq. (A.12) yields:
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After some easy mathematical effort, the denominator of the fraction appeared in Eq. (A.13) will be

written in form of the Gamma function:
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Nomenclature:

A integration constant
CA concentration of component A, 3/mol m

CAi concentration of component A over the plate interface, 3/mol m

CA0 initial concentration of component A, 3/mol m

D diffusion coefficient, 2 /m s
m,n auxiliary variables

Rex local Reynolds number, ( / )u x 

Sc Schmidt number, ( / )D

u x-component of fluid velocity, m/s 
u4 free stream velocity, m/s
x streamwise (horizontal) coordinate, m
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y traverse (vertical) coordinate, m

Greek letters:

    auxiliary variables, , ,   

δc concentration boundary layer thickness, m

δ Momentum (or hydrodynamic) boundary layer thickness, m
Γ Gamma function
υ kinematic viscosity, 2 /m s
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