Chlorophyll \(a \), Chlorophyll \(b \) and Carotenoids of Garden Thyme (\textit{Thymus vulgaris} L.) as Affected by Nutrients

Shahram Sharafzadeh and Omid Alizadeh

Department of Agriculture, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran.

Shahram Sharafzadeh and Omid Alizadeh; Chlorophyll \(a \), Chlorophyll \(b \) and Carotenoids of Garden Thyme (\textit{Thymus vulgaris} L.) as Affected by Nutrients

ABSTRACT

Garden thyme (\textit{Thymus vulgaris} L.) is a herbaceous perennial plant belonging to the Lamiaceae family. The green part of thyme plant constitutes the most popular herbal medicine and spice, used in all developing countries. Environmental factors such as soil nutrients show important role in growth and active substances of medicinal plants. Pigments (chlorophyll and carotenoids) are very important group of primary metabolites that have important role in process of photosynthesis and plant protection from extensive radiation. They have huge appliance in pharmaceutical industry, cosmetology and dietetic. A greenhouse experiment was conducted to evaluate the effect of nutrients on pigment contents of thyme. The treatments were using N, P, K, NP, NK, PK, NPK and Agrihansa (a complete fertilizer, 20-20-20) and comparing them to control (without using fertilizers). The results indicated that maximum chlorophyll \(a \) (4.89 mg/g dw) was observed in Agrihansa treatment. The maximum chlorophyll \(b \) (2.05 mg/g dw) was achieved on Agrihansa treatment which was not significantly different when compared to NP and NPK. The highest carotenoids (0.92 mg/g dw) were obtained in Agrihansa treatment. Chlorophyll \(a+b \) had the highest value (6.94 mg/g dw) in Agrihansa treatment which was not significantly different when compared to NPK treatment. The maximum chlorophyll \(a+b \)/carotenoid (8.02) was achieved in NPK treatment and chlorophyll \(a/b \) (2.38) in Agrihansa treatment.

Key words: medicinal plants, pigments, Lamiaceae, Agrihansa, fertilizers.

Introduction

Thyme (\textit{Thymus vulgaris} L.) is a herbaceous perennial plant belonging to the Lamiaceae family. The plant is native to the western Mediterranean region and southern Italy [13]. There are 350 species of thyme cultivated all over the world [24]. The green part of thyme plant constitutes the most popular herbal medicine and spice, used in all developing countries. The beneficial effects of thyme are well known from ancient times and consumption of its extract is recommended all over the world [1]. It is considered as the main ingredient of many phytopreparations and commonly used as water extracts for its pharmacological activities and thus, have a very important role in phytotherapy [17]. Recently, thyme has become one of the most important medicinal plants used as a natural additive in poultry and livestock feeding studies [3,8]. Such studies have shown that thyme plant could be considered as an alternative natural growth promoter for poultry instead of antibiotics [14]. Thymol and carvacrol, which are the principal constituents of thyme oil [2] have been reported to act as antioxidant [11], antimicrobial agent [6,16], antifungal agent [10] treatment for respiratory tract diseases [9], wound healing, a stomachic carminative, diuretic and urinary disinfectant [4].

Plant pigments (chlorophyll and carotenoids) are very important group of primary metabolites. Besides their role in process of photosynthesis and plant protection from extensive radiation, they have huge appliance in pharmaceutical industry, cosmetology and dietetic. Plant pigments are also given significant role in antioxidant activity[18,19].

Plants are being used for improving the quality of diet and sustaining or regulating good health. Herbal medicines not only provides nutrients but also strengthen and supports the action of digestive system, speeding up the rate of proceeding food and improving the absorption of nutrients. Pigments found in plants play important roles in plant metabolism and visual attraction in nature. Major plant pigments include carotenoids, anthocyanins and other flavonoids, betalains and chlorophylls. They are also rich in flavonoids and other phenolic
constituents. Their antioxidant activity makes them chemo preventive and adds various other medicinal values to them. Plant pigments can be used fields as natural food colourings but they act as antioxidants against free radical to support immune system and prevent diseases [23]. Soil nutrients, macro and microelements, show important role in growth and active substances of medicinal plants [20,21]. Sharafzadeh et al. [22] indicated that nutrients changed chlorophyll and carotenoid contents of lemon balm, a medicinal plant.

The subject of this study was application of various nutrients, alone and together in order to determine their effects on chlorophyll and carotenoid contents of garden thyme.

Materials and Methods

Plant material and experimental conditions:

This study was conducted on experimental greenhouse of Firoozabad Branch, Islamic Azad University, Iran (28°35' N, 52°40' E; 1327 m above sea level). Breeded seeds were sown and the plants were transplanted in pots containing 1/3 soil, 1/3 sand and 1/3 peat (v/v) at 4-6 leaves stage and kept at 27±3/17±3°C day/night temperatures. The treatments were using N, P, K, NP, NK, PK, NPK and Agrihansa (a complete fertilizer, 20-20-20) and were using N, P, K, NP, NK, PK, NPK and Agrihansa (a complete fertilizer, 20-20-20) and comparing them to control (without using fertilizers). N, P, K, and Agrihansa (a complete fertilizer, 20-20-20) were used in experiment.

Statistical analysis:

The data were subjected to analysis of variance (ANOVA) using Statistical Analysis System (SAS) computer software at P < 0.05 and means compared with Duncan’s new multiple range test (DNMRT).

Results and Discussion

The results indicated that maximum chlorophyll \(a \) (4.89 mg/g dw) was observed in Agrihansa treatment which was significantly different when compared to other treatments. The maximum chlorophyll \(b \) (2.05 mg/g dw) was achieved on Agrihansa treatment which was not significantly different when compared to NP and NPK. The highest carotenoids (0.92 mg/g dw) were obtained in Agrihansa treatment and the lowest carotenoids (0.56 mg/g dw) were observed in control. Chlorophyll \(a+b \) had the highest value (6.94 mg/g dw) in Agrihansa treatment which was not significantly different when compared to NPK treatment. The maximum chlorophyll \(a+b \) carotenoid (8.02) was achieved in NPK treatment and chlorophyll \(a+b \) (2.38) in Agrihansa treatment (Table 1).

Redzic et al. [15,16] reported that the ratio between chlorophyll \(a \) and chlorophyll \(b \) in some medicinal plants of Lamiaceae family is rarely 3:1, as stated in classical literature but rather close to 3:2 and more, which makes these species even more medical and gives them higher potential anti-oxidant capacity [5]. Another study, with the same treatments, indicated that NK treatment resulted in the highest values of chlorophyll and carotenoids in Melissa officinalis L. plants [22] but the result of present study was different.

Agrihansa (complete fertilizer) treatment produced the highest level of pigments. It is already established that leaf chlorophyll content increases with N supply. Phosphorus is a part of phospholipids, nucleic acids and nucleoproteins. Potassium is an ion that activates various enzymes and play important role in protein synthesis. Anions transport, assimilate translocation, cell respiration and stomatal movements are influenced by Potassium. On the other hand, magnesium is the central molecule in chlorophyll and is an important cofactor for the production of ATP. As S is an essential constituent of certain amino acids and proteins, S deficiency results in the inhibition of protein and chlorophyll synthesis. Fe deficiency reduces chlorophyll Production. Copper is needed for chlorophyll production, respiration, and protein synthesis [25].

An investigation with broccoli showed that chlorophyll content was higher when inorganic fertilizer adding with organic manure compared with using organic manure alone [15]. Another study with
Celosia argentea indicated that nitrogen fertilizer increased total chlorophyll and carotenoids [7].

Different species can respond to nutrients differently. Nutrients can alter pigments accumulation. On the other hand, several internal and external factors such as genotype, physical and chemical characteristics of the soil, light and temperature may interact with nutrients. Under the conditions of this experiment, Agrihansa resulted in the highest values of the pigments and followed by NPK treatment. Imbalance of nutrients in some of the treatments could not increase pigments when compared to Agrihansa and NPK treatments.

Table 1: Effect of nutrient treatments on pigments of thyme drug leaves.

<table>
<thead>
<tr>
<th>treatment</th>
<th>Chl a (mg/g dw)</th>
<th>Chl b (mg/g dw)</th>
<th>Car (mg/g dw)</th>
<th>Chl a+b (mg/g dw)</th>
<th>Chl a+b/Car</th>
<th>Chl a/Chl b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>2.89f</td>
<td>1.38d</td>
<td>0.56f</td>
<td>4.27f</td>
<td>7.69a</td>
<td>2.10cd</td>
</tr>
<tr>
<td>N</td>
<td>4.18ed</td>
<td>1.83b</td>
<td>0.79bc</td>
<td>6.02c</td>
<td>7.59a</td>
<td>2.28ab</td>
</tr>
<tr>
<td>P</td>
<td>3.53e</td>
<td>1.61e</td>
<td>0.71de</td>
<td>5.14e</td>
<td>7.24a</td>
<td>2.19bed</td>
</tr>
<tr>
<td>K</td>
<td>3.67e</td>
<td>1.70be</td>
<td>0.73cde</td>
<td>5.36de</td>
<td>7.37a</td>
<td>2.16bed</td>
</tr>
<tr>
<td>NP</td>
<td>4.45hc</td>
<td>2.01a</td>
<td>0.83b</td>
<td>6.47b</td>
<td>7.81a</td>
<td>2.21bc</td>
</tr>
<tr>
<td>NK</td>
<td>3.96e</td>
<td>1.73be</td>
<td>0.76bed</td>
<td>5.69ed</td>
<td>7.55a</td>
<td>2.29ab</td>
</tr>
<tr>
<td>PK</td>
<td>3.55e</td>
<td>1.72bc</td>
<td>0.68e</td>
<td>5.27e</td>
<td>7.75a</td>
<td>2.07d</td>
</tr>
<tr>
<td>NPK</td>
<td>4.53b</td>
<td>2.03a</td>
<td>0.82b</td>
<td>6.57ab</td>
<td>8.02a</td>
<td>2.23bc</td>
</tr>
<tr>
<td>Agrihansa</td>
<td>4.89a</td>
<td>2.05a</td>
<td>0.92a</td>
<td>6.94a</td>
<td>7.54a</td>
<td>2.38a</td>
</tr>
</tbody>
</table>

In each column, means with the same letters are not significantly different at 5% level of Duncan’s new multiple range test (DNMRT).

References

18. Redzic, S., N. Sejdic and A. Palic, 2008. Plant pigments in some medical plants of family Lamiaceae (Bosnia and Herzegovina, W.
Balkans). Abstracts of the world congress on medicinal and aromatic plants, Cape Town, 348-349.

