Isolation of new flavonoid glycoside from *Daphne gnidium* L stems

1Mustapha Mahmoud Dif, 2Fouzia Benali Toumi, 3Mohamed Benyahia, 4Amel Benchohra Hadria

1,2,3Laboratoire d’Écodéveloppement des Espaces, Université Djillali Liabès, BP 89, Hai Larbi Ben M’Hidi, SIDI BEL ABBÉS 22000, ALGÉRIE.

ARTICLE INFO

Article history:
Received 14 June 2014
Received in revised form 24 August 2014
Accepted 28 August 2014
Available online 1 September 2014

Keywords:
Daphne gnidium L., stem, Tessala,
Kaempferol 7-O-glucoside

ABSTRACT

Background: *Daphne gnidium* is a plant that grows on Tessala mountain (western of Algeria). Objective: This plant is investigated by different research in the world and it is the first time to valorize this plant from this region. Results: We have extract and identify Kaempferol 7-O-glucoside using NMR H, 13C and UV methods. Conclusion: This molecule is firstly determined in this plant due to the novel method extraction used.

© 2014 AENSI Publisher All rights reserved.

To Cite This Article: Mustapha Mahmoud Dif, Fouzia Benali Toumi, Mohamed Benyahia, Amel Benchohra Hadria., Isolation of new flavonoid glycoside from *Daphne gnidium* L stems., *Adv. in Nat. Appl. Sci.*, 2(3): 4-6, 2014

INTRODUCTION

Numerous methods have been utilized to acquire compounds for drug discovery including isolation from plants and other natural sources, synthetic chemistry, combinatorial chemistry, and molecular modeling (Ley and Baxendale, 2002; Geysen et al., 2003; Lombardino and Lowe, 2004). Despite the recent interest in molecular modeling, combinatorial chemistry, and other synthetic chemistry techniques by pharmaceutical companies and funding organizations, natural products, and particularly medicinal plants, remain an important source of new drugs, new drug leads, and new chemical entities (NCEs) (Newman et al., 2000, 2003; Butler, 2004; Balunas et Kinghorn, 2005).

Flavonoids are a group of polyphenolic compounds diverse in chemical structure and characteristics. They occur naturally in fruit, vegetables, nuts, seeds, flowers, and bark and are an integral part of the human diet.

The aim of this work is flavonoids identification using RMN H1 C13using co and UV method of *Daphne gnidium* L. stems (Thymeleaceae), a plant that commonly grows wild in Tessala (western Algeria) and we can found on the Mediterranean area and can grow to a height of 2 m (Ziyyat, 1997). In folk medicine the infusion of the leaves is used as hypoglycemic (Bellakhdar, 1997) and to treat skin diseases (Bruneton, 1997; Cardon, 2003). This plant is also used in traditional textile dyeing (chaaban et al., 2012)

Methodology:

Extraction by different solvent:

Initially we added 100 g of a fine powder of stems to volume mixture of ethanol / water (80:20) and then it’ macerated for three days and we renewed every 24 hours the solvent (350 ml x 3). Hydro-ethanolic solutions obtained are combined in a single container and then we have filtered to obtain a clear solution.

Then we evaporated the solution using a rotary evaporator (Rotavapor) R 120 at a temperature ranging between 35 with 45°C. We took again the dry extract by boiling water 200ml distilled, after we left during 24 hours in order to undergo a decantation, then it is filtered on filter paper Whatman n°1.

The clear aqueous phase after successive extractions is placed in a funnel to undergo successive confrontations with various solvents. We have used petroleum ether, chloroform, ethyl acetate and 1-butanol.for each stapes we have mixed 100ml of aqueous extract with each solvent than we have evaporated solution using a rotary evaporated then we had lyophilized the extract and we have found a brown sample

UV analysis:

Pure sample were measured with MeOH and with different diagnostic shift reagents (Mabry et al., 1970) on a UV IKON spectrophotometer.

Corresponding Author: Mustapha Mahmoud Dif, Laboratoire d’Écodéveloppement des Espaces, Université Djillali Liabès,

BP 89, Hai Larbi Ben M’Hidi, SIDI BEL ABBÉS 22000, ALGÉRIE.

E-mail: mustitus17@hotmail.com
NMR analyses:
C13 and H1-NMR and analyses were run on Brucker 300, Jeol EX-270 and 400 MHz spectrometers relative to TMS in DMSO.

Results:

Table 1: NMR data of new compound

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.14 d</td>
<td>76.12</td>
</tr>
<tr>
<td>3</td>
<td>5.12 d</td>
<td>127.76</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>92.64</td>
</tr>
<tr>
<td>5</td>
<td>6.29</td>
<td>112.59</td>
</tr>
<tr>
<td>6</td>
<td>6.32</td>
<td>129.26</td>
</tr>
<tr>
<td>7</td>
<td>6.71 d</td>
<td>157.49</td>
</tr>
<tr>
<td>8</td>
<td>7.12 d</td>
<td>121.85</td>
</tr>
<tr>
<td>9</td>
<td>7.13</td>
<td>157.49</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>125.82</td>
</tr>
<tr>
<td>1</td>
<td>6.70</td>
<td>150.70</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>118.66</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>145.25</td>
</tr>
<tr>
<td>4</td>
<td>7.15 d</td>
<td>153.13</td>
</tr>
<tr>
<td>5</td>
<td>6.70 d</td>
<td>134.53</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>143.13</td>
</tr>
<tr>
<td></td>
<td>C=O</td>
<td>158.57</td>
</tr>
</tbody>
</table>

Discussion:

Kaempferol-O-glucoside was isolated from the hydroethanolic extract of daphne gnidium stem extract as a light brown powder. Its molecular formula was assigned to be C21H22O9 by the COSY and Tcocsy 2D NMR spectra. The C 13spectrum, revealed the presence of 21 carbons, consisting of one methylene, 9 methine, two methyl, and eight quaternary carbons. Unambiguous assignments were performed by heteronuclear shift correlation spectroscopy H1, C13 NMR and The UV–Vis absorption spectra of Indicated dihydroflavonol derivative with free hydroxyl groups at C-3 and C-5, and the observed shift in alkali suggested the 7-hydroxyl group to be substituted.

UV (MeOH): kmax270-360 (Mabry, Markham, & Thomas, 1970). The H NMR spectrum showed two doublets at d5.14and 5.11(J= 12.1 Hz) characteristic of transH-2/H-3 protons in a dihydroflavonol. The proton at d6.29 correlated with the carbons at d79.6 and 112.29 in the T cocsy spectrum, therefore it was assigned to the H-6 and H-8 protons of ring A. From the T cocsy experiment, ring B was assigned as a 1,4-disubstituted benzene ring (7.16 d, 2H j =9.5Hzand 5.60 d, 2H j = 9.5Hz). The sugar functionality was identified as b-glucopyranose by the 1Hand13C spectral data.

Conclusion:
We had show a new method to extract Kaempferol-O-glucoside from Daphne gnidium stems.
Further investigations will be important to proof biological activity of this compound and its valorization on prevention and therapies.

REFERENCES

Cardon, D., 2003., Le monde des teintures naturelles-Belin- Paris

